DOI QR코드

DOI QR Code

혼합물 실험 계획법을 활용한 세정용 계면활성제 혼합물 조성의 최적화

Optimization of Surfactant Mixture Composition for Cleansing Using Mixture Experiment Design

  • 송마리아 (동덕여자대학교 보건향장학과) ;
  • 진병석 (동덕여자대학교 보건향장학과)
  • Song, Maria (Department of health and cosmetics, Dongduk Women's University) ;
  • Jin, Byung Suk (Department of health and cosmetics, Dongduk Women's University)
  • 투고 : 2021.08.25
  • 심사 : 2021.10.05
  • 발행 : 2021.10.10

초록

최고 품질의 클렌징 제품 개발을 위해서 계면활성제 혼합물 조성의 최적화를 시도하였다. 사전실험을 통해 세정력, 기포형성력, 오염률에서 각각 우수한 특성을 나타내는 계면활성제 3종 sodium cocoyl alaninate (SCoA), cocamidopropyl betaine (CPB), decyl glucoside (DG)을 선정하였다. 계면활성제 혼합물의 심플렉스 중심 설계 배열에 따른 실험을 수행하고, 실험에서 얻어진 데이터를 가지고 회귀분석을 실시하였다. 통계적으로 유의미한 반응 표면 모델식을 구하고, 세 개의 반응변수의 동시 최적화 과정을 통해 계면활성제 혼합물의 최적 조성은 SCoA (0.22), CPB (0.78), DG (0.00)으로 구해졌다.

The main goal of this study was to find an optimal surfactant mixture composition for the development of the best performing cleansing products. Three different surfactants including sodium cocoyl alaninate (SCoA), cocamidopropyl betaine (CPB), and decyl glucoside (DG) were selected, which showed excellent properties in detergency, foaming height, and contamination rate through preliminary experiments. The experiments by simplex centroid design matrix for surfactant mixtures were performed, and the regression analysis was conducted with the experimental data. Surface response model equations, which is statistically significant (p < 0.05), were obtained. The optimal composition of the surfactant mixture was also determined as SCoA (0.22), CPB (0.78), and DG(0.00) from simultaneous optimization of three response variables.

키워드

참고문헌

  1. P. Agredo, M. C. Rave, J. D. Echeverri, D. Romero, and C. H. Salamance, An Evaluation of the Physicochemical Properties of Stabilized Oil-In-Water Emulsions Using Different Cationic Surfactant Blends for Potential Use in the Cosmetic Industry, Cosmetics, 6, 1-12 (2019). https://doi.org/10.3390/cosmetics6010001
  2. R. K. Sandhu, A. Kaur, P. Kaur, J. K. Rajput, P. Khullar, and M. S. Bakshi, Solubilization of surfactant stabilized gold nanoparticles in oil-in-water and water-in-oil microemulsions, J. Mol. Liq., 336, 116305 (2021). https://doi.org/10.1016/j.molliq.2021.116305
  3. V. Krishnakumar and R. Elansezhian, Dispersion stability of zinc oxide nanoparticles in an electroless bath with various surfactants, Mater. Today:Proceedings, (2021).
  4. S. Koner, A. Pal, and A. Adak, Utilization of silica gel waste for adsorption of cationic surfactant and adsolubilization of organics from textile wastewater: A case study, Desalination, 276(1-3), 142-147 (2011). https://doi.org/10.1016/j.desal.2011.03.035
  5. S. Tamjidi, B. K. Moghadas, H. Esmaeili, F. S. Khoo, G. Gholami, and M. Ghasemi, Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study, Process Saf. Environ. Prot., 148, 775-795 (2021). https://doi.org/10.1016/j.psep.2021.02.003
  6. B. Babajanzadeh, S. Sherizadeh, and H. Ranji, Detergents and surfactants: a brief review, Open Access J. Sci., 3(3), 94-99 (2019).
  7. B. Abdellahi, R. Bois, S. Golonu, G. Pourceau, D. Lesur, V. Chagnault, A. Drelich, I. Pezron, A. Nesterenko, and A. Wadouachi, Synthesis and interfacial properties of new 6-sulfate sugar-based anionic surfactants, Tetrahedron Lett., 74, 153113 (2021). https://doi.org/10.1016/j.tetlet.2021.153113
  8. I. Effendy, and H. I. Maribach, Surfactants and experimental irritant contact dermatitis, Contact Dermatitis, 33(4), 217-225 (1995). https://doi.org/10.1111/j.1600-0536.1995.tb00470.x
  9. P. M. Holland and D. N. Rubingh, Mixed surfactant systems: an overview, 2-30 (1992).
  10. A. Bera, K. Ojha, and A. Mandal, Synergistic effect of mixed surfactant systems on foam behavior and surface tension, J Surfactants Deterg, 16(4), 621-630 (2013). https://doi.org/10.1007/s11743-012-1422-4
  11. N. Jadidi, B. Adib, and F. B. Malihi, Synergism and performance optimization in liquid detergents containing binary mixtures of anionic-nonionic, and anionic-cationic surfactants, J Surfactants Deterg, 16(1), 115-121 (2013). https://doi.org/10.1007/s11743-012-1371-y
  12. J. Zawala, A. Wiertel-Pochopien, and P. B. Kowalczuk, Critical Synergistic Concentration of Binary Surfactant Mixtures, Minerals, 10(2), 192 (2020). https://doi.org/10.3390/min10020192
  13. H. H. Chu, Y. S. Yeo, and K. S. Chuang, Entry in emulsion polymerization using a mixture of sodium polystyrene sulfonate and sodium dodecyl sulfate as the surfactant, Polymer, 48(8), 2298-2305 (2007). https://doi.org/10.1016/j.polymer.2007.02.057
  14. M. Mishra, P. Muthuprasanna, K. S. Parabhe, P. S. Rani, I. A. Satish, I. S. Ch, G. Arunachalam, and S. Shalini, Basics and potential applications of surfactants-a review, Int. J. Pharmtech Res, 1(4), 1354-1365 (2009).
  15. T. Geng, C. Zhang, Y. Jiang, H. Ju, and, Y. Wang, Synergistic effect of binary mixtures contained newly cationic surfactant: Interaction, aggregation behaviors and application properties, J. Mol. Liq., 232, 36-44 (2017). https://doi.org/10.1016/j.molliq.2017.02.055
  16. J. Huang, L. Zhu, G. Zeng, L. Shi, Y. Shi, K. Yi, and X. Li, Recovery of Cd (II) and surfactant in permeate from MEUF by foam fractionation with anionic-nonionic surfactant mixtures, Colloids Surf, A Physicochem Eng Asp, 570, 81-88 (2019). https://doi.org/10.1016/j.colsurfa.2019.03.010
  17. G. Derringer, and R. Suich, Simultaneous optimization of several response variables, J. Qual. Technol., 12(4), 214-219 (1980). https://doi.org/10.1080/00224065.1980.11980968