DOI QR코드

DOI QR Code

고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향

Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density

  • 조종훈 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 황혜인 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 김지홍 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 이영석 (충남대학교 응용화학공학부) ;
  • 임지선 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 강석창 (한국화학연구원(KRICT) C1가스탄소융합연구센터)
  • Cho, Jong Hoon (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Hye In (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ji Hong (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Young-Seak (Department of applied chemical engineering, Chungnam National University) ;
  • Im, Ji Sun (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kang, Seok Chang (C1 Gas & carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
  • 투고 : 2021.09.09
  • 심사 : 2021.09.23
  • 발행 : 2021.10.10

초록

본 연구에서는 코크스, 바인더 피치 및 함침 피치를 사용하여 고밀도 탄소 블록을 제조하고, 함침 공정 시 피치의 유동성이 탄소 블록의 고밀도화에 미치는 영향을 고찰하였다. 코크스와 바인더 피치의 고압 성형을 통해 그린블록을 제조하고 열처리 공정을 통하여 탄소 블록을 얻었다. 열처리 공정 시 바인더 피치의 휘발에 의해 생성된 기공을 제거하고자 함침 공정을 진행하였다. 함침 공정은 함침 피치를 용융하는 전처리 단계와 피치를 탄소 블록에 함침하는 고압 반응 단계로 나누어 진행하였다. 함침 피치의 용융은 140~200 ℃에서 진행하였으며, 열처리 온도가 증가할수록 함침 피치의 점도가 감소하였다. 함침 피치의 점도 감소는 유동성을 향상시켜 탄소 블록 내부 기공을 효율적으로 함침하여 탄소 블록의 기공률을 83% 감소시켰고 겉보기 밀도를 5% 상승시켰다.

In this study, high-density carbon blocks were manufactured using coke, binder pitch, and impregnated pitch, then the effect of pitch fluidity on the densification of carbon blocks during the impregnation process was investigated. A green block was manufactured through high-pressure figuration of coke and binder pitch, and a carbon block was obtained through a heat treatment process. An impregnation process was performed to remove pores generated by volatilization of the binder pitch during the heat treatment process. The impregnation process was carried out the high-pressure reaction step of impregnating the pitch into the carbon block followed by the pretreatment step of melting the impregnation pitch. Melting of the impregnation pitch was carried out at 140~200 ℃, and the viscosity of the impregnation pitch decreased as the heat treatment temperature increased. The decrease in the viscosity of the impregnation pitch improved the fluidity and effectively impregnated the pores inside the carbon block, reducing the porosity of the carbon block by 83% and increasing the apparent density by 5%.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20181110200070)

참고문헌

  1. L. Xiaowei, R. Jean-Charles, and Y. Suyuan, Effect of temperature on graphite oxidation behavior, Nucl. Eng. Des. 227, 273-280 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.004
  2. P. Y. Brisson, H. Darmstadt, M. Fafard, A. Adnot, G. Servant, and G. Soucy, X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells, Carbon 44, 1438-1447 (2006). https://doi.org/10.1016/j.carbon.2005.11.030
  3. L. Chin-Tu and M. D. Bryant, Thermoelastic evolution of contact area and mound temperatures in carbon graphite electrical brushes, Wear 174, 137-146 (1994). https://doi.org/10.1016/0043-1648(94)90095-7
  4. T. Ding, G. Chen, J. Bu, and W. Zhang, Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenary systems, Wear 271, 1629-1636 (2011). https://doi.org/10.1016/j.wear.2010.12.031
  5. J. W. Lin and H. C. Chang, Measurement of friction surface and wear rate between a carbon graphite brush and a copper ring, Tribol. Trans. 54, 887-894 (2011). https://doi.org/10.1080/10402004.2011.613555
  6. Z. Liu, J. Zhang, H. Zuo, and T. Yang, Recent progress on long service life design of Chinese blast furnace hearth, ISIJ Int. 52, 1713-1723 (2012). https://doi.org/10.2355/isijinternational.52.1713
  7. M. Li, Y. Zhou, Y. Liao, and H. Zhou, Effect of defects on thermal conductivity of graphene/epoxy nanocomposites, Carbon 130, 295-303 (2018). https://doi.org/10.1016/j.carbon.2017.12.110
  8. Q. Li, Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, M. Chen, C. Liu, S. Liao, and Y. Gong Ultrahigh Thermal Conductivity of Assembled Aligned Multilayer Graphene/Epoxy Composite, Chem. Mater. 26, 4459-4465 (2014). https://doi.org/10.1021/cm501473t
  9. N. Tiwari, N. Agarwal, D. Roy, K. Mukhopadhyay, and N.E. Prasad, Tailor Made Conductivities of Polymer Matrix for Thermal Management: Design and Development of Three-Dimensional Carbonaceous Nanostructures, Ind. Eng. Chem. Res. 56, 672-679 (2017). https://doi.org/10.1021/acs.iecr.6b03245
  10. E. Fitzer, The future of carbon-carbon composites, Carbon 25, 163 -190 (1987). https://doi.org/10.1016/0008-6223(87)90116-3
  11. H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, William Andrew, Norwich (2012).
  12. M. Inagaki and F. Kang, Materials science and engineering of carbon: fundamentals, Butterworth-Heinemann, Oxford, (2014).
  13. J. E. Choi, S. Ko, and Y. P. Jeon Preparation of petroleum impregnating pitches from pyrolysis fuel oil using two-step heat treatments, Carbon Lett. 29, 1 (2019). https://doi.org/10.1007/s42823-019-00001-7
  14. J. C. Lee, K. S. Shin, D. Y. Lee, B. G. Kim. S. J. Shim, Y. S. Lim, and Y. J. Chung, A Study on the Preparation and Characterization of Carbon Fiber Composite Filter, J. Korean Ceram. Soc. 32, 989-994 (1995).
  15. P. D. Matzinos, J. W. Patrick, and A.Walker, Coal-tar pitch as a matrix precursor for 2-D C/C composites, Carbon 34, 639-644 (1996). https://doi.org/10.1016/0008-6223(96)00018-8
  16. R. Menendez, J. J. Fernendez, J. Bermejo, V. Cebolla, I. Mochida, and Y. Korai, The role of carbon black/coal-tar pitch interactions in the early stage of carbonization, Carbon 34, 895-902 (1996). https://doi.org/10.1016/0008-6223(96)00044-9
  17. J. H. Kim, A. Y. Jo, Y. J. Choi, K. B. Lee, J. S. Im, and B. C. Bai, Improving the mechanical strength of carbon-carbon composites by oxidative stabilization, J. Mater. Res. Technol. 9, 16513-16521 (2020). https://doi.org/10.1016/j.jmrt.2020.11.064