DOI QR코드

DOI QR Code

Microbiome of Haemaphysalis longicornis Tick in Korea

  • Kim, Myungjun (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Kim, Ju Yeong (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Yi, Myung-hee (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Lee, In-Yong (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine) ;
  • Yong, Dongeun (Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine) ;
  • Jeon, Bo-Young (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Yong, Tai-Soon (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
  • Received : 2021.07.06
  • Accepted : 2021.10.02
  • Published : 2021.10.31

Abstract

Ticks can transmit pathogenic bacteria, protozoa, and viruses to humans and animals. In this study, we investigated the microbiomes of Haemaphysalis longicornis according to sex and life stages. The Shannon index was significantly higher for nymphs than adult ticks. Principal coordinates analysis showed that the microbiome composition of female adult and male adult ticks were different. Notably, Coxiella-like bacterium (AB001519), known as a tick symbiont, was found in all nymphs and female adult ticks, but only one out of 4 male adult ticks had Coxiella-like bacterium (AB001519). In addition, Rickettsia rickettsii, Coxiella burnetii, and Anaplasma bovis were detected in this study.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST; numbers NRF-2019R1A2B5B01069843, 2020R1I1A2074562). Raw sequence data are available in NCBI GenBank under Bioproject PRJNA733831.

References

  1. Jongejan F, Uilenberg G. The global importance of ticks. Parasitology 2004; 129 (suppl): 3-14. https://doi.org/10.1017/s0031182004005967
  2. Roy BC, Estrada-Pena A, Krucken J, Rehman A, Ard Menzo Nijhof AM. Morphological and phylogenetic analyses of Rhipicephalus microplus ticks from Bangladesh, Pakistan and Myanmar. Ticks Tick Borne Dis 2018; 9: 1069-1079. https://doi.org/10.1016/j.ttbdis.2018.03.035
  3. Wormser GP, Mckenna D, Piedmonte N, Vinci V, Egizi AM, Backenson B, Falco RC. First recognized human bite in the United States by the Asian Longhorned Tick, Haemaphysalis longicornis. Clin Infect Dis 2020; 70: 314-316. https://doi.org/10.1093/cid/ciz449
  4. Bickerton M, Toledo A. Multiple pruritic tick bites by Asian Longhorned tick larvae (Haemaphysalis longicornis). Int J Acarol 2020; 46: 373-376. https://doi.org/10.1080/01647954.2020.1805004
  5. Hoogstraal H, Roberts FH, Kohls GM, Tipton VJ. Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and Northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J Parasitol 1968; 54: 1197-1213. https://doi.org/10.2307/3276992
  6. White SA, Bevins SN, Ruder MG, Shaw D, Vigil SL, Randall A, Deliberto TJ, Dominguez K, Thompson AT, Mertins JW, Alfred JT, Yabsley MJ. Surveys for ticks on wildlife hosts and in the environment at Asian longhorned tick (Haemaphysalis longicornis)-positive sites in Virginia and New Jersey, 2018. Transbound Emerg dis 2021; 68: 605-614. https://doi.org/10.1111/tbed.13722
  7. de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 2008; 13: 6938-6946. https://doi.org/10.2741/3200
  8. Yamaguti N, Tipton VJ, Keegan HL, Toshioka H. Ticks of Japan, Korea, and the Ryukyu islands. Brigham Young Univ Sci Bull Bio Ser 1971; 15: 1-227. https://doi.org/10.5962/bhl.part.25691
  9. Kim JY, Kim EM, Yi MH, Lee JY, Lee SW, Hwang YJ, Yong DE, Sohn WM. Yong TS. Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice. Parasitol Res 2019; 118: 693-699. https://doi.org/10.1007/s00436-018-6179-x
  10. Bolger AM, Lohse M, Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  11. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics 2012; 13: 31. https://doi.org/10.1186/1471-2105-13-31
  12. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  13. Yoon SH, Ha SM, Kwon SJ, Lim JM, Kim YS, Seo HS, Chun JS. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  15. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988; 4: 11-17. https://doi.org/10.1093/bioinformatics/4.1.11
  16. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  17. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  18. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  19. Shannon C, Petigara N, Seshasai S. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  20. Sneath PHA, Sokal RR. Numerical Taxonomy-the Principles and Practice of Numerical Classification. San Francisco, USA. W. H. Freeman. 1973. https://doi.org/10.2307/2412767
  21. Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966; 53: 325-338. https://doi.org/10.1093/biomet/53.3-4.325
  22. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005; 71: 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
  23. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol 2011; 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60
  24. Jianmin Zhong. Coxiella-like endosymbionts. Adv Exp Med Biol 2012; 984: 365-379. https://doi.org/10.1007/978-94-007-4315-1_18
  25. Chae JB, Cho YS, Cho YK, Kang JG, Shin NS, Chae JS. Epidemiological Investigation of Tick Species from Near Domestic Animal Farms and Cattle, Goat, and Wild Boar in Korea. Korean J Parasitol 2019; 57: 319-324. https://doi.org/10.3347/kjp.2019.57.3.319
  26. Lee JH, Park HS, Jang WJ, Koh SE, Park TK, Kang SS, Kim BJ, Kook YH, Park KH, Lee SH. Identification of the Coxiella sp. detected from Haemaphysalis longicornis ticks in Korea. Microbiol Immunol 2004; 48: 125-130. https://doi.org/10.1111/j.1348-0421.2004.tb03498.x
  27. Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, Paz-Bailey G, Waterman SH, Drexler NA, Kersh GJ, Hooks H, Partridge SK, Visser SN, Beard CB, Petersen LR. Vital signs: trends in reported vectorborne disease cases - United States and Territories, 2004-2016. MMWR Morb Mortal Wkly Rep 2018; 67: 496-501. https://doi.org/10.15585/mmwr.mm6717e1
  28. Chicana B, Couper LI, Kwan JY, Tahiraj E, Swei A. Comparative Microbiome Profiles of Sympatric Tick Species from the Far-Western United States. Insects 2019; 10: 353. https://doi.org/10.3390/insects10100353
  29. Ruiling Z, Zhendong H, Guangfu Y, Zhong Z. Characterization of the bacterial community in Haemaphysalis longicornis (Acari: Ixodidae) throughout developmental stages. Exp Appl Acarol 2019; 77: 173-186. https://doi.org/10.1007/s10493-019-00339-7
  30. Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO. Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol 2016; 25: 4963-4977. https://doi.org/10.1111/mec.13832
  31. Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2007; 2: e405. https://doi.org/10.1371/journal.pone.0000405
  32. Rahal M, Medkour H, Diarra AZ, Bitam I, Parola, Mediannikov O. Molecular identification and evaluation of Coxiella-like endosymbionts genetic diversity carried by cattle ticks in Algeria. Ticks Tick Borne Dis 2020; 11: 101493. https://doi.org/10.1016/j.ttbdis.2020.101493
  33. Duron O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol Lett 2015; 362: fnv132. https://doi.org/10.1093/femsle/fnv132
  34. Murrell A, Dobson SJ, Yang X, Lacey E, Barker SC. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitol Res 2003; 89: 326-334. https://doi.org/10.1007/s00436-002-0722-4
  35. Rudolf I, Mendel J, Sikutova S, Svec P, Masarikova J, Novakova D, Bunkova L,Sedlacek I, Hubalek Z. 16S rRNA gene-based identification of cultured bacterial flora from host-seeking Ixodes ricinus, dermacentor reticulatus and haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiol (Praha) 2009; 54: 419-428. https://doi.org/10.1007/s12223-009-0059-9
  36. Ammerman NC, Beier-Sexton M, Azad AF. Laboratory maintenance of Rickettsia rickettsii. Curr Protoc Microbiol 2008; 11: 3A.5.1-3A.5.21. https://doi.org/10.1002/9780471729259.mc03a05s11
  37. Choi YJ, Jang WJ, Kim JH, Ryu JS, Lee SH, Park KH, Paik HS, Koh YS, Choi MS, Kim IS. Spotted fever group and typhus group rickettsioses in humans, South Korea. Emerg Infect Dis 2005; 11: 237-244. https://doi.org/10.3201/eid1102.040603
  38. Lee JH, Park HS, Jung KD, Jang WJ, Koh SE, Kang SS, Lee IY, Lee WJ, Kim BJ, Kook YH, Park KH, Lee SH. Identification of spotted fever group rickettsiae detected from Haemaphysalis longicornis in Korea. Microbiol Immunol 2003; 47: 301-304. https://doi.org/10.1111/j.1348-0421.2003.tb03399.x
  39. Choi YJ, Lee EM, Park JM, Lee KM, Han SH, Kim JK, Lee SH, Song HJ, Choi MS, Kim IS, Park KH, Jang WJ. Molecular detection of various rickettsiae in mites (Acari: trombiculidae) in southern Jeolla Province, Korea. Microbiol Immunol 2007; 51: 307-312. https://doi.org/10.1111/j.1348-0421.2007.tb03912.x
  40. Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12: 518-553. https://doi.org/10.1128/CMR.12.4.518
  41. Lee SH, Lee JH, Park SD, Lee HK, Hwang SD, Jeong HW, Heo JY, Lee YS. Isolation of Coxiella burnetii in patients with nonspecific febrile illness in South Korea. BMC Infect Dis 2020; 20: 421. https://doi.org/10.1186/s12879-020-05130-3
  42. Ouh IO, Seo MG, Do JC, Kim IK, Cho MH, Kwak DM. Seroprevalence of Coxiella burnetii in bulk-tank milk and dairy cattle in Gyeongbuk province, Korea. Korean J Vet Serv 2013; 36: 243-248 (in Korean). https://doi.org/10.7853/kjvs.2013.36.4.243
  43. Ooshiro M, Zakimi S, Matsukawa Y, Katagiri Y, Inokuma H. Detection of Anaplasma bovis and Anaplasma phagocytophilum from cattle on Yonaguni Island, Okinawa, Japan. Vet Parasitol 2008; 154: 360-364. https://doi.org/10.1016/j.vetpar.2008.03.028
  44. Harrison A, Bastos AD, Medger K, Bennett NC. Eastern rock sengis as reservoir hosts of Anaplasma bovis in South Africa. Ticks Tick Borne Dis 2013; 4: 503-505. https://doi.org/10.1016/j.ttbdis.2013.06.007
  45. Lee M, Yu D, Yoon J, Li Y, Lee J, Park J. Natural co-infection of Ehrlichia chaffeensis and Anaplasma bovis in a deer in South Korea. J Vet Med Sci 2009; 71: 101-103. https://doi.org/10.1292/jvms.71.101
  46. Kang JG, Ko S, Kim YJ, Yang HJ, Lee H, Shin NS, Choi KS, Chae JS. New genetic variants of Anaplasma phagocytophilum and Anaplasma bovis from Korean water deer (Hydropotes inermis argyropus). Vector Borne Zoonotic Dis 2011; 11: 929-938. https://doi.org/10.1089/vbz.2010.0214
  47. Lee MJ, Chae JS. Molecular detection of Ehrlichia chaffeensis and Anaplasma bovis in the salivary glands from Haemaphysalis longicornis ticks. Vector Borne Zoonotic Dis 2010; 10: 411-413. http://doi.org/10.1089/vbz.2008.0215
  48. Doan HT, Noh JH, Choe SE, Yoo MS, Kim YH, Reddy KE, Quyen DV, Nguyen LT, Nguyen TT, Kweon CH, Jung SC, Chang KY, Kang SW. Molecular detection and phylogenetic analysis of Anaplasma bovis from Haemaphysalis longicornis feeding on grazing cattle in Korea. Vet Parasitol 2013; 196: 478-481. https://doi.org/10.1016/j.vetpar.2013.03.025