Browse > Article
http://dx.doi.org/10.3347/kjp.2021.59.5.489

Microbiome of Haemaphysalis longicornis Tick in Korea  

Kim, Myungjun (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
Kim, Ju Yeong (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
Yi, Myung-hee (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
Lee, In-Yong (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
Yong, Dongeun (Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine)
Jeon, Bo-Young (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University)
Yong, Tai-Soon (Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine)
Publication Information
Parasites, Hosts and Diseases / v.59, no.5, 2021 , pp. 489-496 More about this Journal
Abstract
Ticks can transmit pathogenic bacteria, protozoa, and viruses to humans and animals. In this study, we investigated the microbiomes of Haemaphysalis longicornis according to sex and life stages. The Shannon index was significantly higher for nymphs than adult ticks. Principal coordinates analysis showed that the microbiome composition of female adult and male adult ticks were different. Notably, Coxiella-like bacterium (AB001519), known as a tick symbiont, was found in all nymphs and female adult ticks, but only one out of 4 male adult ticks had Coxiella-like bacterium (AB001519). In addition, Rickettsia rickettsii, Coxiella burnetii, and Anaplasma bovis were detected in this study.
Keywords
Haemaphysalis longicornis; Rickettsia; Coxiella; microbiome; vector-borne disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 White SA, Bevins SN, Ruder MG, Shaw D, Vigil SL, Randall A, Deliberto TJ, Dominguez K, Thompson AT, Mertins JW, Alfred JT, Yabsley MJ. Surveys for ticks on wildlife hosts and in the environment at Asian longhorned tick (Haemaphysalis longicornis)-positive sites in Virginia and New Jersey, 2018. Transbound Emerg dis 2021; 68: 605-614. https://doi.org/10.1111/tbed.13722   DOI
2 Yamaguti N, Tipton VJ, Keegan HL, Toshioka H. Ticks of Japan, Korea, and the Ryukyu islands. Brigham Young Univ Sci Bull Bio Ser 1971; 15: 1-227. https://doi.org/10.5962/bhl.part.25691   DOI
3 Kim JY, Kim EM, Yi MH, Lee JY, Lee SW, Hwang YJ, Yong DE, Sohn WM. Yong TS. Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice. Parasitol Res 2019; 118: 693-699. https://doi.org/10.1007/s00436-018-6179-x   DOI
4 Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics 2012; 13: 31. https://doi.org/10.1186/1471-2105-13-31   DOI
5 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2   DOI
6 Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988; 4: 11-17. https://doi.org/10.1093/bioinformatics/4.1.11   DOI
7 Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461   DOI
8 Lee SH, Lee JH, Park SD, Lee HK, Hwang SD, Jeong HW, Heo JY, Lee YS. Isolation of Coxiella burnetii in patients with nonspecific febrile illness in South Korea. BMC Infect Dis 2020; 20: 421. https://doi.org/10.1186/s12879-020-05130-3   DOI
9 Ouh IO, Seo MG, Do JC, Kim IK, Cho MH, Kwak DM. Seroprevalence of Coxiella burnetii in bulk-tank milk and dairy cattle in Gyeongbuk province, Korea. Korean J Vet Serv 2013; 36: 243-248 (in Korean). https://doi.org/10.7853/kjvs.2013.36.4.243   DOI
10 Ooshiro M, Zakimi S, Matsukawa Y, Katagiri Y, Inokuma H. Detection of Anaplasma bovis and Anaplasma phagocytophilum from cattle on Yonaguni Island, Okinawa, Japan. Vet Parasitol 2008; 154: 360-364. https://doi.org/10.1016/j.vetpar.2008.03.028   DOI
11 Lee JH, Park HS, Jang WJ, Koh SE, Park TK, Kang SS, Kim BJ, Kook YH, Park KH, Lee SH. Identification of the Coxiella sp. detected from Haemaphysalis longicornis ticks in Korea. Microbiol Immunol 2004; 48: 125-130. https://doi.org/10.1111/j.1348-0421.2004.tb03498.x   DOI
12 Lee M, Yu D, Yoon J, Li Y, Lee J, Park J. Natural co-infection of Ehrlichia chaffeensis and Anaplasma bovis in a deer in South Korea. J Vet Med Sci 2009; 71: 101-103. https://doi.org/10.1292/jvms.71.101   DOI
13 Kang JG, Ko S, Kim YJ, Yang HJ, Lee H, Shin NS, Choi KS, Chae JS. New genetic variants of Anaplasma phagocytophilum and Anaplasma bovis from Korean water deer (Hydropotes inermis argyropus). Vector Borne Zoonotic Dis 2011; 11: 929-938. https://doi.org/10.1089/vbz.2010.0214   DOI
14 Lee MJ, Chae JS. Molecular detection of Ehrlichia chaffeensis and Anaplasma bovis in the salivary glands from Haemaphysalis longicornis ticks. Vector Borne Zoonotic Dis 2010; 10: 411-413. http://doi.org/10.1089/vbz.2008.0215   DOI
15 Roy BC, Estrada-Pena A, Krucken J, Rehman A, Ard Menzo Nijhof AM. Morphological and phylogenetic analyses of Rhipicephalus microplus ticks from Bangladesh, Pakistan and Myanmar. Ticks Tick Borne Dis 2018; 9: 1069-1079. https://doi.org/10.1016/j.ttbdis.2018.03.035   DOI
16 Jongejan F, Uilenberg G. The global importance of ticks. Parasitology 2004; 129 (suppl): 3-14. https://doi.org/10.1017/s0031182004005967   DOI
17 Wormser GP, Mckenna D, Piedmonte N, Vinci V, Egizi AM, Backenson B, Falco RC. First recognized human bite in the United States by the Asian Longhorned Tick, Haemaphysalis longicornis. Clin Infect Dis 2020; 70: 314-316. https://doi.org/10.1093/cid/ciz449   DOI
18 Rudolf I, Mendel J, Sikutova S, Svec P, Masarikova J, Novakova D, Bunkova L,Sedlacek I, Hubalek Z. 16S rRNA gene-based identification of cultured bacterial flora from host-seeking Ixodes ricinus, dermacentor reticulatus and haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiol (Praha) 2009; 54: 419-428. https://doi.org/10.1007/s12223-009-0059-9   DOI
19 Ammerman NC, Beier-Sexton M, Azad AF. Laboratory maintenance of Rickettsia rickettsii. Curr Protoc Microbiol 2008; 11: 3A.5.1-3A.5.21. https://doi.org/10.1002/9780471729259.mc03a05s11   DOI
20 Lee JH, Park HS, Jung KD, Jang WJ, Koh SE, Kang SS, Lee IY, Lee WJ, Kim BJ, Kook YH, Park KH, Lee SH. Identification of spotted fever group rickettsiae detected from Haemaphysalis longicornis in Korea. Microbiol Immunol 2003; 47: 301-304. https://doi.org/10.1111/j.1348-0421.2003.tb03399.x   DOI
21 Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO. Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol 2016; 25: 4963-4977. https://doi.org/10.1111/mec.13832   DOI
22 Choi YJ, Lee EM, Park JM, Lee KM, Han SH, Kim JK, Lee SH, Song HJ, Choi MS, Kim IS, Park KH, Jang WJ. Molecular detection of various rickettsiae in mites (Acari: trombiculidae) in southern Jeolla Province, Korea. Microbiol Immunol 2007; 51: 307-312. https://doi.org/10.1111/j.1348-0421.2007.tb03912.x   DOI
23 Harrison A, Bastos AD, Medger K, Bennett NC. Eastern rock sengis as reservoir hosts of Anaplasma bovis in South Africa. Ticks Tick Borne Dis 2013; 4: 503-505. https://doi.org/10.1016/j.ttbdis.2013.06.007   DOI
24 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09   DOI
25 Shannon C, Petigara N, Seshasai S. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x   DOI
26 Doan HT, Noh JH, Choe SE, Yoo MS, Kim YH, Reddy KE, Quyen DV, Nguyen LT, Nguyen TT, Kweon CH, Jung SC, Chang KY, Kang SW. Molecular detection and phylogenetic analysis of Anaplasma bovis from Haemaphysalis longicornis feeding on grazing cattle in Korea. Vet Parasitol 2013; 196: 478-481. https://doi.org/10.1016/j.vetpar.2013.03.025   DOI
27 Bickerton M, Toledo A. Multiple pruritic tick bites by Asian Longhorned tick larvae (Haemaphysalis longicornis). Int J Acarol 2020; 46: 373-376. https://doi.org/10.1080/01647954.2020.1805004   DOI
28 de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 2008; 13: 6938-6946. https://doi.org/10.2741/3200   DOI
29 Bolger AM, Lohse M, Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170   DOI
30 Yoon SH, Ha SM, Kwon SJ, Lim JM, Kim YS, Seo HS, Chun JS. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755   DOI
31 Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005; 71: 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005   DOI
32 Chae JB, Cho YS, Cho YK, Kang JG, Shin NS, Chae JS. Epidemiological Investigation of Tick Species from Near Domestic Animal Farms and Cattle, Goat, and Wild Boar in Korea. Korean J Parasitol 2019; 57: 319-324. https://doi.org/10.3347/kjp.2019.57.3.319   DOI
33 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol 2011; 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60   DOI
34 Murrell A, Dobson SJ, Yang X, Lacey E, Barker SC. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitol Res 2003; 89: 326-334. https://doi.org/10.1007/s00436-002-0722-4   DOI
35 Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2007; 2: e405. https://doi.org/10.1371/journal.pone.0000405   DOI
36 Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565   DOI
37 Sneath PHA, Sokal RR. Numerical Taxonomy-the Principles and Practice of Numerical Classification. San Francisco, USA. W. H. Freeman. 1973. https://doi.org/10.2307/2412767   DOI
38 Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966; 53: 325-338. https://doi.org/10.1093/biomet/53.3-4.325   DOI
39 Jianmin Zhong. Coxiella-like endosymbionts. Adv Exp Med Biol 2012; 984: 365-379. https://doi.org/10.1007/978-94-007-4315-1_18   DOI
40 Ruiling Z, Zhendong H, Guangfu Y, Zhong Z. Characterization of the bacterial community in Haemaphysalis longicornis (Acari: Ixodidae) throughout developmental stages. Exp Appl Acarol 2019; 77: 173-186. https://doi.org/10.1007/s10493-019-00339-7   DOI
41 Rahal M, Medkour H, Diarra AZ, Bitam I, Parola, Mediannikov O. Molecular identification and evaluation of Coxiella-like endosymbionts genetic diversity carried by cattle ticks in Algeria. Ticks Tick Borne Dis 2020; 11: 101493. https://doi.org/10.1016/j.ttbdis.2020.101493   DOI
42 Duron O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol Lett 2015; 362: fnv132. https://doi.org/10.1093/femsle/fnv132   DOI
43 Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, Paz-Bailey G, Waterman SH, Drexler NA, Kersh GJ, Hooks H, Partridge SK, Visser SN, Beard CB, Petersen LR. Vital signs: trends in reported vectorborne disease cases - United States and Territories, 2004-2016. MMWR Morb Mortal Wkly Rep 2018; 67: 496-501. https://doi.org/10.15585/mmwr.mm6717e1   DOI
44 Chicana B, Couper LI, Kwan JY, Tahiraj E, Swei A. Comparative Microbiome Profiles of Sympatric Tick Species from the Far-Western United States. Insects 2019; 10: 353. https://doi.org/10.3390/insects10100353   DOI
45 Choi YJ, Jang WJ, Kim JH, Ryu JS, Lee SH, Park KH, Paik HS, Koh YS, Choi MS, Kim IS. Spotted fever group and typhus group rickettsioses in humans, South Korea. Emerg Infect Dis 2005; 11: 237-244. https://doi.org/10.3201/eid1102.040603   DOI
46 Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12: 518-553. https://doi.org/10.1128/CMR.12.4.518   DOI
47 Hoogstraal H, Roberts FH, Kohls GM, Tipton VJ. Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and Northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J Parasitol 1968; 54: 1197-1213. https://doi.org/10.2307/3276992   DOI
48 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381   DOI