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INTRODUCTION

Ticks can transmit pathogenic bacteria, protozoa, viruses that 
cause great suffering and potentially fatal diseases in humans 
worldwide [1]. Ticks also cause considerable losses to the live-
stock industry by causing irritation and blood loss to their 
hosts, thus decreasing the leather quality and at the same time 
acting as vectors of many pathogens [2]. Haemaphysalis longi-

cornis has been reported in Australia, New Zealand, New Cale-
donia, Fiji, Japan, Korea, Northeastern China, USSR, and USA 
[3-6].

The bacterial pathogens transmitted by Haemaphysalis spp. 
are Rickettsia spp., Ehrlichia spp., Anaplasma spp., Francisella 
spp., Coxiella spp., and Borrelia spp. which cause the following 
diseases, respectively: Rocky Mountain spotted fever, Siberian 
or North Asian typhus, Japanese spotted fever, and Australian 
spotted fever; human monocytic ehrlichiosis and canine eh-
rlichiosis; human granulocytic anaplasmosis, and bovine ana-
plasmosis; tularemia; Q fever; and Lyme disease and tick-
borne relapsing fever [7]. The parasites transmitted by Haema-

physalis spp. are Theileria spp., Babesia spp., and Hepatozoon 

spp. which likewise cause the following diseases, respectively: 
tropical theileriosis and sheep theilerosis; cattle, dog, and 
sheep babesiosis; and hepatozoonosis [7].

Despite the importance of H. longicornis as an important 
pathogen vector, little is known regarding its microbiome. In 
this study, we employed high-throughput sequencing of the 
V3–V4 hypervariable regions of the 16S rRNA gene to investi-
gate the bacterial abundance and diversity between the nymph 
stage and the adult developmental stages of H. longicornis to 
evaluate the changes in the bacterial abundance and the main-
tenance of the bacterial community throughout the life cycle 
of the tick.

MATERIALS AND METHODS

Tick collection and identification
Ticks were collected within a radius of 50 m from vegetation 

(geographical location: 37.323366/129.233736) by flagging 
in Samcheok, Gangwon-do Province, Korea, in June 2020. 
Species identification of the collected ticks was performed by 
examination under a dissecting microscope, according to Ya-
maguti et al. [8]. Among the 140 H. longicornis obtained, 11 
nymphs, 3 female adults, and 4 male adults were randomly 
selected for microbiome study.

DNA extraction
The surface of each tick was sterilized using alcohol before 
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DNA extraction. DNA was extracted from individual ticks us-
ing a NucleoSpin DNA Insect kit (Macherey–Nagel, Düren, 
Germany) according to the manufacturer’s instructions.

High-throughput sequencing of 16S rRNA gene 
amplicons

The V3–V4 region of the 16S rRNA gene was amplified by 
PCR using the following bacterial universal primer pair: for-
ward primer, 5́ - TCGTCGGCAGCGTCAGATGTGTATAAGAGA-
CAGCCTACGGGNGGCWGCAG-3́  and reverse primer, 5́ - 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC-3́  [9]. A limited-cycle amplification 
step was performed to add multiplexing indices and Illumina 
sequencing adapters. The libraries were normalized, pooled, 
and sequenced using the MiSeq platform (600 cycles, Illumina 
MiSeq V3 cartridge; Illumina, San Diego, California, USA) ac-
cording to the manufacturer’s instructions.

Bioinformatics and statistics
Bioinformatic analyses were performed as described by Kim 

et al. [9]. Raw reads were processed through a quality check, 
and low-quality (Q <25) reads were filtered using Trimmo-
matic 0.32 [10]. Paired-end sequence data were then merged 
using PandaSeq [11]. Primers were trimmed using the Chun-
Lab in-house program (ChunLab, Inc., Seoul, Korea), applying 
a similarity cut-off of 0.8. Sequences were denoised using the 
Mothur pre-clustering program, which merges sequences and 
extracts unique sequences, allowing up to 2 differences be-
tween sequences [12]. The EzBioCloud database [13] was used 
for taxonomic assignment using BLAST 2.2.22 [14], and pair-
wise alignments were generated to calculate similarity [15]. 
The UCHIME algorithm and non-chimeric 16S rRNA database 
from EzBioCloud were used to detect chimeric sequences for 
reads with a best hit similarity rate of <97% [16]. Sequence 
data were then clustered using CD-Hit and UCLUST [17,18]. 
All of the abovementioned analyses were performed with Ez-
BioCloud, a commercially available ChunLab bioinformatics 
cloud platform for microbiome research (https://www.ezbio-
cloud.net/). The reads were normalized to 10,000 to perform 
the analyses. We computed the Shannon index [19], un-
weighted pair group method with arithmetic mean (UPGMA) 
clustering [20], and principal coordinates analysis (PCoA) [21] 
based on the generalized UniFrac distance [22]. We used the 
Kruskal–Wallis test to test for differences in the number of op-
erational taxonomic units (OTUs) and used the Shannon in-

dex to compare microbiome diversity between the 2 age 
groups. We used linear discriminant analysis effect size (LEfSe) 
analysis to identify significantly different taxa [23]. Swarm plot 
was created by the beeswarm package in R software (version 
4.0.5).

RESULTS

For H. longicornis nymph, female adult, and male adult ticks, 
the average reads assigned to bacteria were 35,622, 59,365, 
and 51,859, respectively (Supplementary Table S1). The num-
ber of OTUs, which reflects species richness, was not signifi-
cantly different between the groups (Fig. 1A, B; Supplementary 
Table S1). The Shannon index, which reflects species diversity, 
was significantly higher for nymphs (n=11) than the adult 
ticks (both males and females, n=7; P=0.026; Fig. 1C). How-
ever, it did not differ significantly among the 3 groups, and the 
average Shannon indices were 1.55, 0.83, and 0.78 for nymphs 
(n=11), female adults (n=3), and male adult (n=4) ticks, re-
spectively (Fig. 1D; Supplementary Table S1).

Beta diversity was analyzed to show the difference in bacte-
rial composition between the samples. First, the PCoA result 
showed that the samples of the male adult group and those of 
the female adult group clustered well (Fig. 2A), suggesting that 
the bacterial composition of the 2 groups was different. In 
contrast, nymph samples were relatively scattered in the plot 
versus the other groups. Similarly, in UPGMA clustering, the 
male adult and female adult samples were clustered closely 
among their groups than the nymph samples.

In the composition, the most predominant bacterial species 
was Pseudomonas fulva, which was found in all ticks evaluated 
in this study with an average relative abundance of 48.9% (Fig. 
3A, B). The second most abundant species was Coxiella-like 
bacterium (AB001519), a known tick endosymbiont [24], with 
an average relative abundance of 20.7% (Fig. 3A). Coxiella-like 
bacterium (AB001519) was found in all nymphs and female 
adult ticks although some nymph samples showed very few 
reads for this species (Fig. 3B; Supplementary Table S2). In 
contrast, among the 4 male adult tick samples, Coxiella-like 
bacterium (AB001519) was found in only one sample with 
0.7% relative abundance (Fig. 3B). Relative abundance of Co-

rynebacterium spp., including C. falsenii, C. xerosis, and C. re-

sistens was more than 40% in 4 nymphs (N8, N9, N10, and 
N11) but it was not detected in other samples (Fig. 3B).

To identify significant differences in bacterial abundance be-
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Fig. 1. Alpha diversities of the microbiomes of Haemaphysalis longicornis. (A) The number of OTUs (species richness) in nymph (n=11) 
and adult tick (n=7) groups. (B) The number of OTUs in nymph (n=11), female adult tick (n=3), and male adult tick (n=4) groups. (C) 
The Shannon index in nymph and adult tick groups. (D) The Shannon index in nymph, female adult tick, and male adult tick groups. The 
boxplots indicate the minimum, first quartile, second quartile (median), third quartile, and maximum values.
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Fig. 2. Beta diversities of the microbiomes of Haemaphysalis longicornis. (A) Principal coordinates (PC) depicting differences in the taxo-
nomic compositions of the bacterial communities. Nymph (red), female (green), and male adults (blue). (B) Unweighted pair group meth-
od with arithmetic mean (UPGMA) clustering. N1-N11 represent nymphs, F1-F3 represent female adult ticks, and M1-M4 represent 
male adult ticks.
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tween the nymph, female adult, and female adult ticks, we 
performed LEfSe analysis. The LDA scores for Coxiella-like bac-
terium (AB001519) was 4.88 and its average relative abun-
dance was 66.4% in female adult ticks, 15.7% in nymphs, and 
0.2% in male adult ticks (Table 1; Fig. 4A). The LDA score for 
P. fulva was 4.79 and its relative abundance was the highest in 

male adult ticks (86.9%, Fig. 4B). The LDA score for P. fluores-

cens was 3.51 and its relative abundance was the highest in 
male adult ticks (4.0%, Fig. 4C).

Known pathogenic species were also identified. Rickettsia 

rickettsii was detected in 3 nymphs and 3 male adult ticks and 
Coxiella burnetii was detected in 4 nymphs (Supplementary Ta-
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Fig. 3. Microbiome composition at species level in Haemaphysalis longicornis. (A) Average microbiome composition in the ticks. (B) Indi-
vidual microbiome composition of the nymph (N1-N11), female (F1-F3), and male (M1-M4) ticks.

Table 1. Linear discriminant effect size analysis on differentially abundant bacterial taxa between Haemaphysalis longicornis nymph, fe-
male and male ticks

Taxon name Taxon rank LDA effect size P-value
Relative abundance 
in female adult (%)

Relative abundance 
in male adult (%)

Relative abundance 
in nymph (%)

Coxiella-like bacterium (AB001519) Species 4.88 0.016 66.4 0.2 15.7
Pseudomonas fulva Species 4.79 0.049 28.1 86.9 40.6
Pseudomonas fluorescens Species 3.51 0.037 0.90 4.0 1.5
Coxiella Genus 4.94 0.008 66.4 0.2 17.9
Pseudomonas Genus 4.83 0.038 29.2 91.8 42.9
Coxiellaceae Family 4.94 0.008 66.4 0.2 17.9
Pseudomonadaceae Family 4.83 0.038 29.2 91.8 42.9
Legionellales Order 4.94 0.008 66.4 0.2 17.9
Pseudomonadales Order 4.83 0.038 29.2 91.8 43.0

Only taxa meeting an LDA significant threshold of >3 are shown. 
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ble S2). In addition, Anaplasma bovis, which infects ruminants, 
was found in one nymph (Supplementary Table S2). Ehrlichia 
spp., Francisella spp., and Borrelia spp. were not detected in this 
study.

DISCUSSION

H. longicornis is the most common tick species in the grass 
in Korea. According to previous studies, out of 7,973 ticks col-
lected from farms in Korea, 7,758 (97.3%) were identified as 
H. longicornis [25,26]. H. longicornis is also known as a trans-
mitter of several pathogens such as Rickettsia spp., Anaplasma-
taceae, Borrelia spp., Babesia spp., Francisella spp., Bratonella 
spp., Coxiella spp., and severe fever with thrombocytopenia 
syndrome virus [27].

In this study, we investigated the differences in the microbi-
omes of H. longicornis nymphs, female adults, and male adults. 
The Shannon index was significantly higher for nymphs than 
the adult ticks (Fig. 1C). This suggests that nymphs harbor a 
more diverse bacterial community compared to adult ticks. In 
6 species of ticks, including Haemaphysalis leporispalustris, mi-
crobiome richness and diversity were highest in the larval stage 
and eventually decreased in subsequent life stages; this result 
is in concordance with our findings [28]. Life-stage related dif-
ferences in the microbiome of H. longicornis indicate that the 
tick loses most of the bacteria present in the early develop-
mental stages and then reestablishes the bacterial community 
after molting [29,30].

Coxiella spp. is known as an endosymbiont essential for the 
survival and reproduction of hard ticks [26,31]. Coxiella-like 

bacteria are a large group of yet-to-be-isolated and character-
ized bacteria phylogenetically close to the causative agent of Q 
fever, C. burnetii [32]. These Coxiella-like bacteria are maternal-
ly inherited endosymbionts, highly prevalent in tick popula-
tions, and engaged in mutualistic interactions with their ar-
thropod hosts [33]. In our study, the relative abundance of 
Coxiella-like bacterium (AB001519) was significantly different 
among nymphs, female adult, and male adult ticks. An aver-
age of 66.4% of female adult ticks and all nymphs and female 
adult ticks were found to have Coxiella-like bacterium (AB 
001519). In contrast, only one tick out of 4 male adult ticks 
had Coxiella-like bacterium (AB001519), and its relative abun-
dance was only 0.7%. Coxiella-like bacterium (AB001519) may 
be playing an important role in the development and repro-
duction of H. longicornis especially for female adult and during 
the nymph stage. Since Coxiella-like bacterium (AB001519) is 
almost eliminated in male adult ticks, there may be no role for 
this bacterium in male adult ticks; likewise, this bacterium 
may be transmitted vertically from mother tick to offspring. In 
addition, at least one strain of Pseudomonas was identified in 
each tick in this study. Pseudomonas spp. were frequently de-
tected in ticks in other studies, indicating that it may have a 
symbiotic association with ticks [34,35].

Among the 18 tick samples in this study, R. rickettsii was 
found in 6, C. burnetii in 4, and A. bovis in 1, although further 
investigation is necessary to determine the pathogenicity of 
the isolated strains. R. rickettsii is the causative agent of Rocky 
Mountain spotted fever, one of the most virulent human infec-
tions [36]. Using molecular assays, several spotted fever-caus-
ing Rickettsia spp., including R. japonica, R. conorii, R. akari, R. 
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felis, R. rickettsii and unclassified Rickettsia spp., have been de-
tected in humans, ticks, and mites [37-39].

C. burnetii is an obligate intracellular bacterial pathogen 
causing Q fever that is manifested by pneumonia, fever, and 
granulomatous hepatitis. The reservoir of C. burnetii includes 
mammals, birds, and arthropods such as ticks [40]. Domestic 
animals represent the most frequent source of human C. bur-
netii infection [40]. The number of human Q fever cases in 
Korea has been rapidly increasing since 2015 [41]. Several 
studies have investigated C. burnetii infection in dairy cattle in 
Korea [42].

A. bovis can be transmitted by ticks to cattle, sheep, goats, 
and other domestic ruminants [43]. A. bovis causes fever, ane-
mia, drowsiness, convulsions, weight loss, and enlargement of 
lymph nodes in cattle [44]. Recently, A. bovis was also detected 
in Korean spotted deer (Cervus nippon) [45], Korean water deer 
(Hydropotes inermis) [46], and H. longicornis in Korea [47,48].

A limitation of this study was that we did not investigate the 
microbiome of H. longicornis in its larval stage. A single larva is 
not sufficient for the effective extraction of DNA, which is re-
quired to further perform high-throughput sequencing. How-
ever, the strength of this study was that we were able to investi-
gate the microbiome of the individual ticks without pooling 
their DNA samples. In addition, ticks were collected from a 
relatively small location and at a single time point. Further 
similar studies on a larger number of ticks collected from vari-
ous locations and at multiple time points are required.

In conclusion, in this metagenomics study on H. longicornis, 
different microbiome patterns were found among nymphs, fe-
male adult ticks, and male adult ticks. Coxiella-like bacterium 
(AB001519) was found in all nymphs and female adult ticks, but 
rarely in male adult ticks. In addition, several potential patho-
gens were found such as R. rickettsii, C. burnetii, and A. bovis.
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