Acknowledgement
This work was supported by a research promotion program of SCNU.
References
- S. Brauser, L. A. Pepke, G. Weber, and M. Rethmeier, Deformation behavior of spot-welded high strength steels for automotive application, Materials Science Engineering: A, 527, 7099 (2010). Doi: https://doi.org/10.1016/j.msea.2010.07.091
- S. L. Gibbons, R. A. Abrahams, M. W. Vaughan, R. E. Barber, R. C. Harris, R. Arroyave, and I. Karaman, Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing, Materials Science Engineering: A, 725, 57 (2018). Doi: https://doi.org/10.1016/j.msea.2018.04.086
- E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570
- J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel, Corrosion Science and Technology, 17, 242 (2018). Doi: https://doi.org/10.14773/cst.2018.17.5.242
- M. M. Islam, C. Zou, A. C. T. V. Duin, and S. Raman, Interaction of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics, 18, 761 (2015). Doi: https://doi.org/10.1039/c5cp06108c
- S. V. Brahimi, S. Yue, and K. R. Sriraman, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philosophical Transactions A, 375, 2098 (2017). Doi: https://doi.org/10.1098/rsta.2016.0407
- S. Thomas, N. Ott, R. F. Schaller, J. A. Yuwono, P. Volovitch, G. Sundararajan, N. V. Medhekar, K. Ogle, J. R. Scully, and N. Birbilis, The effect of absorbed hydrogen on the dissolution of steel, Heliyon, 3, e00209 (2017). Doi: http://dx.doi.org/10.1016/j.heliyon.-2016.e00209
- D. Rudomilova, T. Prosek, I. Traxler, J. Faderl, G. Luckeneder, G. S. Aichhorn, and A. Muhr, Critical assessment of the effect of atmospheric corrosion induced hydrogen on mechanical properties of advanced high strength steel, Metals, 11, 44 (2020). Doi: https://doi.org/10.3390/met11010044
- H. Xu, X. Xia, L. Hua, Y. Sun, and Y. Dai, Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.24Cr-1Mo steel by SSRT method, Engineering Failure Analysis, 19, 43 (2012). Doi: https://doi.org/10.1016/j.engfailanal.2011.08.008
- W. S. Yang, J. W. Seo, and S. H. Ahn, A study on hydrogen embrittlement research on automotive steel sheets, Corrosion Science and Technology, 17, 193 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.4.193
- J. S. Park, H. J. Lee, and S. J. Kim, Electrochemical corrosion and hydrogen diffusion behaviors of Zn and Al coated hot-press forming steel sheets in chloride containing environments, Korean Journal of Materials Research, 28, 286 (2018). Doi: http://dx.doi.org/-10.3740/MRSK.2018.28.5.286
- S. A. J. Forsik, P. R. D. D. Castillo, Encyclopedia of Iron, Steel, and Their Alloys, 1st ed., pp. 2169 - 2181, Taylor & Francis (2016). Doi: https://doi.org/10.1081/E-EISA120052026
- S. W. Thompson, A two-tilt analysis of electron diffraction patterns from transition-iron-carbide precipitates formed during tempering of 4340 steel, Metallography, Microstructure, and Analysis, 5, 367 (2016). Doi: https://doi.org/10.1007/s13632-016-0302-0
- C. Wagner and W. Traud, The original formulation of the mixed potential concept and the basis theory of corrosion of a pure metal, Zeitschrift Fur Elektrochemie und Angewandte Physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702
- M. Stren and A. L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, Journal of Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496
- ISO 17081, Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, Switzerland: ISO Standard (2004).
- M. Hunkel, J. Dong, J. Epp, D. Kaiser, S. Dietrich, V. Schulze, A. Rajaei, B. Hallstedt, and C. Broeckmann, Comparative study of the tempering behaviors of different martensitic steels by mean of in-situ diffractometry and dilatometry, Materials, 13, 5058 (2020). Doi: https://doi.org/10.3390/ma13225058
- V. Massardier, M. Goune, D. Fabregue, A. Selouane, T. Douillard, and O. Bouaziz, Evolution of microstructure and strength during the ultra-fast tempering of Fe-Mn-C martensitic steels, Journal of Materials Science, 49, 7782 (2014). Doi: https://doi.org/10.1007/s10853-014-8489-4
- J. Krawczyk, P. Bala, and J. Pacyna, The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni, Journal of Microscopy, 237, 411 (2010). Doi: https://doi.org/10.1111/j.1365-2818.2009.03275.x.
- X. Zhu, W. Li, T. Y. Hsu, S. Zhou, L. Wang, and X. Jin, Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment, Scripta Materialia, 97, 21 (2015). Doi: https://doi.org/10.1016/j.scriptamat.2014.10.030
- A. Nazarov, V. Vivier, F. Vucko, and D. Thierry, Effect of tensile stress on the passivity breakdown and repassivation of AISI 304 stainless steel: A scanning kelvin probe and scanning electrochemical microscopy study, Journal of The Electrochemical Society, 166, C3207 (2019). Doi: https://doi.org/10.1149/2.0251911jes
- H. Miyamoto, M. Yuasa, M. Rifai, and H. Fujiwara, Corrosion behavior of severely deformed pure and single-phase materials, Materials transaction, 60, 1243 (2019). Doi: https://doi.org/10.2320/matertrans.MF201935
- D. Clover, B. Kinsella, B. Pejcic, and R. de Marco, The influence of microstructure on the corrosion rate of various carbon steel, Journal of Applied Electrochemistry, 35, 139 (2005). Doi: https://doi.org/10.1007/s10800-004-6207-7
- J. S. Park, H. G. Seong, and S. J. Kim, Effect of heat treatment conditions on corrosion and hydrogen diffusion behaviors of ultra-strong steel used for automotive applications, Corrosion Science and Technology, 18, 267 (2019). Doi: https://doi.org/10.14773/CST.2020.19.2.100
- S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579
- D. A. Lopez, W. H. Schreiner, S. R. de Sanchez, and S. N. Simison, The influence of carbon steel microstructure on corrosion layers an XPS and SEM characterization, Applied Surface Science, 207, 69 (2003). Doi: https://doi.org/10.1016/s0169-4332(02)01218-7
- J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution contatining chlorides and acetates, Electrochemica Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4
- S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.2320/matertrans.M2016222
- E. Serra, A. Perujo, and G. Benamati, Influence of traps on the deuterium behavior in the low activation martensitic steels F82H and Batman, Journal of Nuclear Materials, 245, 108 (1997). Doi: https://doi.org/10.1016/S0022-3115(97)00021-4
- H. K. D. H. Bhadeshia, Prevention of hydrogen embrittlement in steels, ISIJ International, 56, 24 (2016). Doi: http://dx.doi.org/10.2355/isijinternational.ISIJINT-2015-430
- B. D. Craig, On the elastic interaction of hydrogen with precipitates in lath martensite, Acta Metallurgica, 25, 1027 (1977). Doi: https://doi.org/10.1016/0001-6160(77)90131-6
- K. Kiuchi and R. B. McLellan, The solubility and diffusivity of hydrogen in well-annealed and deformed iron, Acta Metallurgica, 31, 961 (1983). Doi: https://doi.org/10.1016/0001-6160(83)90192-X
- W. Y. Choo and J. Y. Lee, Hydrogen trapping phenomena in carbon steel, Journal of Materials Science, 17, 1930 (1982). Doi: https://doi.org/10.1007/BF00540409
- A. McNabb and P. K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transaction of the Metallurgical Society of AIME, 277, 618 (1963).
- G. W. Hong and J. Y. Lee, The interaction of hydrogen and the cementite-ferrite interface in carbon steel, Journal of Materials Science, 18, 271 (1983). Doi: https://doi.org/10.1007/-BF00543835
- I. M. Bernstein, The effect of hydrogen on the deformation of iron, Scripta Metallurgica, 8, 343 (1974). Doi: https://doi.org/10.1016/0036-9748(74)90136-7
- S. J. Kim, E. H. Hwang, J. S. Park, S. M. Ryu, D. W. Yun, and H. G. Seong, Inhibiting hydrogen embrittlement in ultra-strong steels for automotive application by Ni-alloying, npj Materials Degradation, 3, 12 (2019). Doi: https://doi.org/10.1038/s41529-019-0074-5