DOI QR코드

DOI QR Code

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet

초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향

  • Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Yun, Duck Bin (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Seong, Hwan Goo (POSCO Technical Research Laboratories) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 박진성 (순천대학교 신소재공학과) ;
  • 윤덕빈 (순천대학교 신소재공학과) ;
  • 성환구 (포스코 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2021.09.30
  • Accepted : 2021.10.15
  • Published : 2021.10.31

Abstract

Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.

Keywords

Acknowledgement

This work was supported by a research promotion program of SCNU.

References

  1. S. Brauser, L. A. Pepke, G. Weber, and M. Rethmeier, Deformation behavior of spot-welded high strength steels for automotive application, Materials Science Engineering: A, 527, 7099 (2010). Doi: https://doi.org/10.1016/j.msea.2010.07.091
  2. S. L. Gibbons, R. A. Abrahams, M. W. Vaughan, R. E. Barber, R. C. Harris, R. Arroyave, and I. Karaman, Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing, Materials Science Engineering: A, 725, 57 (2018). Doi: https://doi.org/10.1016/j.msea.2018.04.086
  3. E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570
  4. J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel, Corrosion Science and Technology, 17, 242 (2018). Doi: https://doi.org/10.14773/cst.2018.17.5.242
  5. M. M. Islam, C. Zou, A. C. T. V. Duin, and S. Raman, Interaction of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics, 18, 761 (2015). Doi: https://doi.org/10.1039/c5cp06108c
  6. S. V. Brahimi, S. Yue, and K. R. Sriraman, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philosophical Transactions A, 375, 2098 (2017). Doi: https://doi.org/10.1098/rsta.2016.0407
  7. S. Thomas, N. Ott, R. F. Schaller, J. A. Yuwono, P. Volovitch, G. Sundararajan, N. V. Medhekar, K. Ogle, J. R. Scully, and N. Birbilis, The effect of absorbed hydrogen on the dissolution of steel, Heliyon, 3, e00209 (2017). Doi: http://dx.doi.org/10.1016/j.heliyon.-2016.e00209
  8. D. Rudomilova, T. Prosek, I. Traxler, J. Faderl, G. Luckeneder, G. S. Aichhorn, and A. Muhr, Critical assessment of the effect of atmospheric corrosion induced hydrogen on mechanical properties of advanced high strength steel, Metals, 11, 44 (2020). Doi: https://doi.org/10.3390/met11010044
  9. H. Xu, X. Xia, L. Hua, Y. Sun, and Y. Dai, Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.24Cr-1Mo steel by SSRT method, Engineering Failure Analysis, 19, 43 (2012). Doi: https://doi.org/10.1016/j.engfailanal.2011.08.008
  10. W. S. Yang, J. W. Seo, and S. H. Ahn, A study on hydrogen embrittlement research on automotive steel sheets, Corrosion Science and Technology, 17, 193 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.4.193
  11. J. S. Park, H. J. Lee, and S. J. Kim, Electrochemical corrosion and hydrogen diffusion behaviors of Zn and Al coated hot-press forming steel sheets in chloride containing environments, Korean Journal of Materials Research, 28, 286 (2018). Doi: http://dx.doi.org/-10.3740/MRSK.2018.28.5.286
  12. S. A. J. Forsik, P. R. D. D. Castillo, Encyclopedia of Iron, Steel, and Their Alloys, 1st ed., pp. 2169 - 2181, Taylor & Francis (2016). Doi: https://doi.org/10.1081/E-EISA120052026
  13. S. W. Thompson, A two-tilt analysis of electron diffraction patterns from transition-iron-carbide precipitates formed during tempering of 4340 steel, Metallography, Microstructure, and Analysis, 5, 367 (2016). Doi: https://doi.org/10.1007/s13632-016-0302-0
  14. C. Wagner and W. Traud, The original formulation of the mixed potential concept and the basis theory of corrosion of a pure metal, Zeitschrift Fur Elektrochemie und Angewandte Physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702
  15. M. Stren and A. L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, Journal of Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496
  16. ISO 17081, Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, Switzerland: ISO Standard (2004).
  17. M. Hunkel, J. Dong, J. Epp, D. Kaiser, S. Dietrich, V. Schulze, A. Rajaei, B. Hallstedt, and C. Broeckmann, Comparative study of the tempering behaviors of different martensitic steels by mean of in-situ diffractometry and dilatometry, Materials, 13, 5058 (2020). Doi: https://doi.org/10.3390/ma13225058
  18. V. Massardier, M. Goune, D. Fabregue, A. Selouane, T. Douillard, and O. Bouaziz, Evolution of microstructure and strength during the ultra-fast tempering of Fe-Mn-C martensitic steels, Journal of Materials Science, 49, 7782 (2014). Doi: https://doi.org/10.1007/s10853-014-8489-4
  19. J. Krawczyk, P. Bala, and J. Pacyna, The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni, Journal of Microscopy, 237, 411 (2010). Doi: https://doi.org/10.1111/j.1365-2818.2009.03275.x.
  20. X. Zhu, W. Li, T. Y. Hsu, S. Zhou, L. Wang, and X. Jin, Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment, Scripta Materialia, 97, 21 (2015). Doi: https://doi.org/10.1016/j.scriptamat.2014.10.030
  21. A. Nazarov, V. Vivier, F. Vucko, and D. Thierry, Effect of tensile stress on the passivity breakdown and repassivation of AISI 304 stainless steel: A scanning kelvin probe and scanning electrochemical microscopy study, Journal of The Electrochemical Society, 166, C3207 (2019). Doi: https://doi.org/10.1149/2.0251911jes
  22. H. Miyamoto, M. Yuasa, M. Rifai, and H. Fujiwara, Corrosion behavior of severely deformed pure and single-phase materials, Materials transaction, 60, 1243 (2019). Doi: https://doi.org/10.2320/matertrans.MF201935
  23. D. Clover, B. Kinsella, B. Pejcic, and R. de Marco, The influence of microstructure on the corrosion rate of various carbon steel, Journal of Applied Electrochemistry, 35, 139 (2005). Doi: https://doi.org/10.1007/s10800-004-6207-7
  24. J. S. Park, H. G. Seong, and S. J. Kim, Effect of heat treatment conditions on corrosion and hydrogen diffusion behaviors of ultra-strong steel used for automotive applications, Corrosion Science and Technology, 18, 267 (2019). Doi: https://doi.org/10.14773/CST.2020.19.2.100
  25. S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579
  26. D. A. Lopez, W. H. Schreiner, S. R. de Sanchez, and S. N. Simison, The influence of carbon steel microstructure on corrosion layers an XPS and SEM characterization, Applied Surface Science, 207, 69 (2003). Doi: https://doi.org/10.1016/s0169-4332(02)01218-7
  27. J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution contatining chlorides and acetates, Electrochemica Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4
  28. S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.2320/matertrans.M2016222
  29. E. Serra, A. Perujo, and G. Benamati, Influence of traps on the deuterium behavior in the low activation martensitic steels F82H and Batman, Journal of Nuclear Materials, 245, 108 (1997). Doi: https://doi.org/10.1016/S0022-3115(97)00021-4
  30. H. K. D. H. Bhadeshia, Prevention of hydrogen embrittlement in steels, ISIJ International, 56, 24 (2016). Doi: http://dx.doi.org/10.2355/isijinternational.ISIJINT-2015-430
  31. B. D. Craig, On the elastic interaction of hydrogen with precipitates in lath martensite, Acta Metallurgica, 25, 1027 (1977). Doi: https://doi.org/10.1016/0001-6160(77)90131-6
  32. K. Kiuchi and R. B. McLellan, The solubility and diffusivity of hydrogen in well-annealed and deformed iron, Acta Metallurgica, 31, 961 (1983). Doi: https://doi.org/10.1016/0001-6160(83)90192-X
  33. W. Y. Choo and J. Y. Lee, Hydrogen trapping phenomena in carbon steel, Journal of Materials Science, 17, 1930 (1982). Doi: https://doi.org/10.1007/BF00540409
  34. A. McNabb and P. K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transaction of the Metallurgical Society of AIME, 277, 618 (1963).
  35. G. W. Hong and J. Y. Lee, The interaction of hydrogen and the cementite-ferrite interface in carbon steel, Journal of Materials Science, 18, 271 (1983). Doi: https://doi.org/10.1007/-BF00543835
  36. I. M. Bernstein, The effect of hydrogen on the deformation of iron, Scripta Metallurgica, 8, 343 (1974). Doi: https://doi.org/10.1016/0036-9748(74)90136-7
  37. S. J. Kim, E. H. Hwang, J. S. Park, S. M. Ryu, D. W. Yun, and H. G. Seong, Inhibiting hydrogen embrittlement in ultra-strong steels for automotive application by Ni-alloying, npj Materials Degradation, 3, 12 (2019). Doi: https://doi.org/10.1038/s41529-019-0074-5