DOI QR코드

DOI QR Code

A Study on the Material Decomposition of Dual-Energy Iodine Image by Using the Multilayer X-ray Detector

다층구조 엑스선 검출기를 이용한 이중에너지 조영제 영상의 물질 구분에 관한 연구

  • Kim, Jun-Woo (Advanced Process Development Team, Strategy & Innovation Division, Doosan Heavy Industries and Construction Co., Ltd.)
  • 김준우 (두산중공업 전략/혁신부문 신공정기술개발팀)
  • Received : 2021.09.24
  • Accepted : 2021.10.08
  • Published : 2021.10.31

Abstract

Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.

Keywords

References

  1. Levin DC, Schapiro RM, Boxt LM, Dunham L, Harrington DP, Ergun DL. Digital subtraction angiography: Principles and pitfalls of image improvement techniques. American Journal of Roentgenology. 1984;143(3):447-54. https://doi.org/10.2214/ajr.143.3.447
  2. Meijering EH, Zuiderveld KJ, Viergever MA. Image registration for digital subtraction angiography. Int J Comput Vision. 1999;31(2):227-46. https://doi.org/10.1023/A:1008074100927
  3. Mistretta CA, Ort MG, Kelcz F, Cameron JR, Siedband MP, Kelcz AB. Absorption edge fluoroscopy using quasi-monoenergetic x-ray beams. Invest Radiol. 1973;8(6):402-12. https://doi.org/10.1097/00004424-197300860-00006
  4. Kelcz F, Mistretta CA. Absorption-edge fluoroscopy using a three spectrum technique. Med. Phys. 1976;3(3):159-68. https://doi.org/10.1118/1.594219
  5. Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol. 1976;21(5):733-44. https://doi.org/10.1088/0031-9155/21/5/002
  6. Riederer SJ, Mistretta CA. Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys. 1977;4(6):474-81. https://doi.org/10.1118/1.594357
  7. Kruger RA, Riederer SJ, Mistretta CA. Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys. 1977;4(3):244-9. https://doi.org/10.1118/1.594374
  8. Houk TL, Kruger RA, Mistretta CA, Riederer SJ, Shaw CG, Lancaster JC, Flemming DC. Real-time digital K-edge subtraction fluoroscopy. Invest Radiol. 1979;14(4):270-8. https://doi.org/10.1097/00004424-197907000-00002
  9. McCollough CH, Van Lysel MS, Peppler WW, Mistretta CA. A correlated noise reduction algorithm for dual-energy digital subtraction angiography. Med Phys. 1989;16(6):873-80. https://doi.org/10.1118/1.596436
  10. Molloi SY, Weber DM, Peppler WW, Folts JD, Mistretta CA. Quantitative dual-energy coronary arteriography. Invest Radiol. 1990;25(8):908-14. https://doi.org/10.1097/00004424-199008000-00007
  11. Van Lysel MS, Miller WP, Senior DG, Gupta VK, Ende DJ, Albright DJ. Left ventricular dual-energy digital subtraction angiography: A motion immune digital subtraction technique. Int J Card Imaging. 1991;7(1):55-65. https://doi.org/10.1007/BF01797681
  12. Van Lysel MS. Optimization of beam parameters for dual-energy digital subtraction angiography. Med Phys. 1994;21(2):219-26. https://doi.org/10.1118/1.597376
  13. Guthaner DF, Brody WR, Lewis BD, Keyes GS, Belanger BF. Clinical application of hybrid subtraction digital angiography: Preliminary results. Cardiovas Intervention Radiol. 1983;6(4):290-4. https://doi.org/10.1007/BF02552450
  14. Molloi SY, Mistretta CA. Quantification techniques for dual-energy cardiac imaging. Med Phys. 1989; 16(2):209-17. https://doi.org/10.1118/1.596418
  15. Park HS, Lim CH, Kang BS, et al. A study on the evaluation of patient dose in interventional radiology. Journal of Radiological Science and Technology. 2012;35(4):299-308.
  16. Lee SY, Lim HS, Han MS. The evaluation of patients Radiation dose during TACE of interventional Radiology. Journal of Radiological Science and Technology. 2011;34(3):209-14.
  17. Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical Note: Spektr 3.0-A computational tool for x-ray spectrum. Med Phys. 2013;43(8):4711-7. https://doi.org/10.1118/1.4955438
  18. Richard S, Siewerdsen JH. Cascaded systems analysis of boise reduction algorithms in dual-energy imaging. Med Phys. 2008;35(2):586-601. https://doi.org/10.1118/1.2826556
  19. Kim J, Kim DW, Kim SH, Yun S, Youn H, Jeon H, Kim HK. Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector. Journal of Instrumentation. 2017;12(1):C01029. https://doi.org/10.1088/1748-0221/12/01/C01029
  20. Kim J, Kim DW, Kam S, Park J, Shon CS, Heo SK, Kim HK. Development of a large-area multilayer detector for single-shot dual-energy imaging. Journal of Instrumentation. 2018;13(12):C12018. https://doi.org/10.1088/1748-0221/13/12/c12018
  21. Gonzalez RC, Woods RE. Digital Image Processing. Prentice-Hall Inc.; 2002.