DOI QR코드

DOI QR Code

피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material

  • 이태헌 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Lee, Tae Heon (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2021.05.03
  • 심사 : 2021.07.14
  • 발행 : 2021.11.01

초록

본 연구에서는 피치가 코팅된 실리콘 시트/흑연 음극복합소재의 전기화학적 특성을 조사하였다. NaCl을 주형으로 하여 스토버 법 및 마그네슘 열 환원법을 통해 실리콘 시트를 제조하고, 양친성 물질인 SDBS로 흑연과 결합시켜 실리콘 시트/흑연을 합성하였다. THF를 용매로 석유계 피치가 코팅된 실리콘 시트/흑연 음극복합소재를 제조하였고, 음극복합소재의 물리적 특성은 XRD, SEM, EDS와 TGA를 통해 분석하였다. 전기화학적 특성은 LiPF6 (EC:DMC:EMC=1:1:1 vol%)의 전해액을 사용해 전지를 제조하여, 충·방전 사이클, 율속, 순환전압전류, 전기화학적 임피던스 테스트를 통해 조사하였다. 실리콘 조성이 증가함에 따라 방전 용량이 증가하였고, 장기 안정성은 감소하는 경향을 보였다. 30 wt% 실리콘 조성을 갖는 실리콘 시트/흑연 복합소재에 피치를 코팅한 음극복합소재는 1228.8 mAh/g의 높은 초기 방전 용량을 보였으며, 50사이클 이후 용량 유지율은 77%로 실리콘 시트/흑연 복합소재에 비해 안정성이 개선됨을 알 수 있었다.

In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

키워드

과제정보

이 논문은 한국산업기술평가원의 2020년 "석유계 기반 인조흑연 음극재 제조기술 개발"지원 사업으로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Kim, J. S., Pflecging, W., Kohler, R., Seifert, H. J., Kim, T. Y., Byun, D. J., Jung, H. G., Choi, W. C. and Lee, J. K., "Three-demensional Silicon/Carbon Core-shell Electrode as An Anode Material for Lithium-ion Batteries," J. Power Sources, 279, 13-20(2015). https://doi.org/10.1016/j.jpowsour.2014.12.041
  2. Bao, Q., Huang, Y. H., Lan, C. K., Chen, B. H. and Duh, J. G., "Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes," Electrochim. Acta, 173, 82-90(2015). https://doi.org/10.1016/j.electacta.2015.04.155
  3. Yang, Y., Wang, Z., Yan, G., Guo, H., Wang, J., Li, X., Zhou, Y. and Zhou, R., "Pitch Carbon and LiF co-modified Si-based Anode Material for Lithium Ion Batteries," Ceram. Int., 43, 8590-8595 (2017). https://doi.org/10.1016/j.ceramint.2017.03.125
  4. Lee, J. H. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  5. Liu, J. and Liu, X. W., "Two-Dimensional Nanoarchitectures for Lithium Storage," Adv. Mater., 24, 4097-4111(2012). https://doi.org/10.1002/adma.201104993
  6. Park, J. M., Cho, J. H., Ha, J. H., Kim, H. S., Kim, S. W. Lee, J., Chung, K. Y., Cho, B. W. and Choi, H. J., "Reversible Crystalline-amorphous Phase Ransformation in Si Nanoseets with Lithi-/delithiation," Nanotechnology, 28, 255401-255408(2017). https://doi.org/10.1088/0957-4484/28/25/255401
  7. Dou, F., Shi, L., Chen, G. and Zhang, D., "Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries," Electrochem. Energy Reviews, 2, 149-198(2019). https://doi.org/10.1007/s41918-018-00028-w
  8. Chen, S., Chen, Z., Xu, X., Cao, C., Xia, M. and Luo, Y., "Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode," Small, 14(12), 1703361(2018). https://doi.org/10.1002/smll.201703361
  9. Suresh, S., Wu, Z. P., Batrolucci, S. F., Basu, S., Mukherjee, R., Gupta, T., Hundekar, P., Shi, Y., Lu, T. M. and Koratkar, N., "Protecting Silicon Film Anode in Lithium-Ion batteries Using as Atomically Thin Graphene Drape," ACS Nano, 11, 5051-5061 (2017). https://doi.org/10.1021/acsnano.7b01780
  10. Lee, S. H. and Lee, J. D., "Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group," Korean Chem. Eng. Res., 57(1), 118-123(2019).
  11. Han, U. J., Hwang, J. U., Kim, K. S., Kim, J. H., Lee, J. D. and Im, J. S., "Optimization of the Preparation Condition for Pitch Based Anode to Enhance the Electrochemical Properties of LIBs," J. Ind. Eng. Chem., 73, 241-247(2019). https://doi.org/10.1016/j.jiec.2019.01.031
  12. Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithium-ion Batteries," J. Alloys Compd., 530, 30-35(2012). https://doi.org/10.1016/j.jallcom.2012.03.096
  13. Yoshio, M., Wang, H. and Fukuda, K., "Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material," Angew. Chem. Int. Ed., 42, 4203-4206(2003). https://doi.org/10.1002/anie.200351203
  14. Kim, W. S., Hwa, Y., Shin, J. H., Ynag, M., Sohn, H. J. and Hong, S. H., "Scalable Synthesis of Silicon Nanosheets from Sand as an Anode for Li-ion Batteries," Nanoscale, 6, 4297-4302 (2014). https://doi.org/10.1039/c3nr05354g
  15. Meng, X., Huo, H., Cui, Z., Guo, X. and Dong, S., "Influences of Oxygen Content on the Elctrochemical Performance of a-SiOx Thin-film Anodes," Electrochim. Acta, 283, 183-189(2018). https://doi.org/10.1016/j.electacta.2018.06.095
  16. Jung, M., Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chem. Eng. Res., 54(1) 16-21(2016). https://doi.org/10.9713/kcer.2016.54.1.16
  17. Lee, S. H. and Lee, J. D., "Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite," Korean Chem. Eng. Res., 85(1), 142-149(2020).
  18. Jo, Y. J. and Lee, J. D., "Electrochemical Charateristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent," Korean Chem. Eng. Res., 57(1), 5-10(2019).
  19. Li, M., Hou, X., Fu, L., Wang, S., Hu, X., Qin, H., Wu, Y., Ru, Q., Liu, X. and Hu, S., "Mass-Producible Method for Preparation of a Carbon-Coated Graphite@Plasma Nano-Silicon@Carbon Composite with Enhanced performance as Lithium ion Battery Anode," Electrochim. Acta, 249, 113-121(2017). https://doi.org/10.1016/j.electacta.2017.07.146
  20. Xie, J., Tong, L., Su, L., Xu, Y., Wang, L. and Wang, Y., "Coreshell Yolk-shell Si@C@Void@C Nanohybrids as Advanced Lithium Ion Battery Anodes with Good Electronic Conductivity and Corrosion Resistance," J. Power Sources, 342, 529(2017). https://doi.org/10.1016/j.jpowsour.2016.12.094