DOI QR코드

DOI QR Code

Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성

Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process

  • 이종호 (한서대학교 화학과) ;
  • 이영기 (성균관대학교 신소재공학부) ;
  • 김영직 (성균관대학교 신소재공학부) ;
  • 오한준 (한서대학교 신소재공학과)
  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Lee, Young-Ki (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University)
  • 투고 : 2021.09.12
  • 심사 : 2021.09.16
  • 발행 : 2021.10.27

초록

For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.

키워드

과제정보

This work was supported by 2020 research program of the Hanseo University in Korea.

참고문헌

  1. W. Liu, D. Liu, K. Wang, X. Yang, S. Hu and L. Hu, Nanoscale Res. Lett., 14, 203 (2019). https://doi.org/10.1186/s11671-019-3041-8
  2. J. Hou, J. Zhou, Y. Liu, Y. Yang, S. Zheng and Q. Wang, J. Alloys Compd., 849, 156439 (2020).
  3. Y. Wang, C. Zhu, G. Zuo, Y. Guo, W. Xiao, Y. Dai, J. Kong, X. Xu, Y. Zhou, A. Xie, C. Sun and Q. Xian, Appl. Catal., B, 278, 119298 (2020). https://doi.org/10.1016/j.apcatb.2020.119298
  4. I. Ganesh, Mol. Catal., 451, 51 (2018). https://doi.org/10.1016/j.mcat.2017.10.024
  5. L. Zhang, Q. Shen, L. Yu, F. Huang, C. Zhang, J. Sheng, F. Zhang, D. Cheng and H. Yang, CrystEngComm, 22, 5481 (2020). https://doi.org/10.1039/d0ce00761g
  6. M. Quesada-Gonzalez, K. Baba, C. Sotelo-Vazquez, P. Choquet, C. J. Carmalt, I. P. Parkin and N. D. Boscher, J. Mater. Chem. A, 5, 10836 (2017). https://doi.org/10.1039/C7TA02029E
  7. X. Lu, B. Tian, F. Chen and J. Zhang, Thin Solid Films, 519, 111 (2010). https://doi.org/10.1016/j.tsf.2010.07.071
  8. D. Chen, D. Yang, Q. Wang and Z. Jiang, Ind. Eng. Chem. Res., 45, 4110 (2006). https://doi.org/10.1021/ie0600902
  9. J.-H. Lee, J.-I. Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang and H.-J. Oh, Ceram. Int., 41, 11899 (2015). https://doi.org/10.1016/j.ceramint.2015.05.157
  10. W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, J. Am. Chem. Soc., 126, 4782 (2004). https://doi.org/10.1021/ja0396753
  11. E. Finazzi, C. D. Valentin and G. Pacchioni, J. Phys. Chem. C, 113, 220 (2009). https://doi.org/10.1021/jp8072238
  12. S. C. Moon, H. Mametsuka, S. Tabata and E. Suzuki, Catal. Today, 58, 125 (2000). https://doi.org/10.1016/S0920-5861(00)00247-9
  13. X. Zhou, F. Peng, H. Wang, H. Yu and J. Yang, Electrochem. Commun., 13, 121 (2011). https://doi.org/10.1016/j.elecom.2010.11.030
  14. X. Lan, L. Wang, B. Zhang, B. Tian and J. Zhang, Catal. Today, 224, 163 (2014). https://doi.org/10.1016/j.cattod.2013.10.062
  15. J.-H. Lee, S. Heo, J.-I. Youn, Y.-J. Kim, S.-J. Suh and H.-J. Oh, Korean J. Mater. Res., 29, 790 (2019). https://doi.org/10.3740/MRSK.2019.29.12.790
  16. J.-H. Lee, S. Heo, J.-I. Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang and H.-J. Oh, Korean J. Mater. Res., 27, 569 (2017). https://doi.org/10.3740/MRSK.2017.27.10.569
  17. L. Liu, Y. Liu, X. Wang, N. Hu, Y. Li, C. Li, Y. Meng and Y. An, Appl. Surf. Sci., 561, 149969 (2021). https://doi.org/10.1016/j.apsusc.2021.149969
  18. L. Liu, N. Hu, Y. L. An, X. Y. Du, X. Zhang, Y. Li, Y. Zeng and Z. Cui, Materials, 13, 4760 (2020). https://doi.org/10.3390/ma13214760
  19. N. Patel, A. Dashora, R. Jaiswal, R. Fernandes, M. Yadav, D. C. Kothari, B. L. Ahuja and A. Miotello, J. Phys. Chem. C, 119, 18581 (2015). https://doi.org/10.1021/acs.jpcc.5b05290