Acknowledgement
This research was supported by a grant (KMI2019-00310) from Development of Detailed Weather Data Production and Service Technology for Private Use funded by Korea Meteorological Institute (KMI).
References
- K. Jia & S. Gong. (2008). Generalized face super-resolution. Journal of IEEE Transactions on Image Processing, 17(6), 873-886. DOI : 10.1109/TIP.2008.922421
- I, Sanchez & V. Vilaplana. (2018). Brain MRI super-resolution using 3D generative adversarial networks. arXiv preprint arXiv:1812.11440.
- Y. S. Chung, R. K. Park & J. M. Kim. (2014). Study on predictive modeling of incidence of traffic accidents caused by weather conditions. Journal of the Korea Contents Association, 5(1), 9-15. DOI : 10.15207/JKCS.2014.5.1.009
- H. J. Yoon. (2016). Development of contents on the marine meteorology sevice by meterology and climate big data. Journal of the Korea Institue of Electronic Communication Sciences, 11(2), 125-138. DOI : 10.13067/JKIECS.2016.11.2.125
- H. S. Hwang et al. (2018). Design and implementation of an urban safety service system using realtime weather and atmosphere data. Journal of Korea Multimedia Society, 21(5), 599-608. DOI : 10.9717/KMMS.2018.21.5.599
- Y. W. Kim et al. (2017). Design and implementation of a flood disaster safety system using realtime weather big data. Journal of the Korea Contents Association, 17(1), 351-362. DOI : 10.5392/JKCA.2017.17.01.351
- M. S. Won et al. (2015). A study on prediction improvement of forest fire danger rating fused with mountain meteorology information. The Korean Society of Agricultural and Forest Meteorology Conference, (pp. 126-130).
- J. H. Jeong & Y. T. Chae. (2018). Improvement for forecasting of photovoltaic power output using real time weather data based on machine learning. Journal of the Korean Society of Living Environmental System, 25(1), 119-125. DOI : 10.21086/KSLES.2018.02.25.1.119
- J. Kim, J. K. Lee & K. M. Lee. (2016). Accurate image super-resolution using very deep convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition. (pp. 1646-1654). DOI : 10.1109/CVPR.2016.182
- K. Stengel et al. (2020). Adversarial super-resolution of climatological wind and solar data. National Acadamy of Sciences, 117(29), 16805-16815. DOI : 10.1073/PNAS.1918964117
- H. S. Tark et al. (2017). A new prediction model for power consumption with local weather information. Journal of the Korea Contents Association, 16(11), 488-498. DOI : 10.5392/JKCA.2016.16.11.488
- Y. H. Kim et al. (2020). Construction of super-resolution convolutional neural network model for super-resolution of temperature data. Journal of the Korea Convergence Society, 11(8), 7-13. DOI : 10.15207/JKCS.2020.11.8.007
- C. Dong et al. (2014). Learning a deep convolution network for image super-resolution. Europen Conference on Computer Vision. (pp. 184-199). DOI : 10.1007/978-3-319-10593-2_13
- C. Dong et al. (2015). Image super-resolution using deep convolutional networks. Journal of IEEE Transactions on Pattern Analysis and Machine Intelligence. 38(2). 295-307. DOI : 10.1109/TPAMI.2015.2439281
- H. Ren, M. EI-Khamy & J. Lee. (2017). Image super resolution based on fusing multiple convolution neural networks. IEEE Conference on Computer Vision and Pattern Recognition Workshops. (pp. 54-61). DOI : 10.1109/CVPRW.2017.142
- M. Ishii et al. (2005). Objective analyses of sea-surface temperature and marine meteorological varialbes for the 20th century using ICOADS and the Kobe collection. Journal of the Royal Meteorological Society, 25(7), 865-879. DOI : 10.1002/JOC.1169
- C. Ledig et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network. IEEE Conference on Computer Vision and Pattern Recognition. (pp. 4681-4690). DOI : 10.1109/CVPR.2017.19
- M. K. Lee et al. (2018). Detecting anomalies in meteorologoical data using support vector regression. Journal of Advances in Meteorolgy, 2018. DOI : 10.1155/2018/5439256
- J. S. Lee et al. (2012). Objective analysis of temperature using the elevation-dependent weighting function. Journal of Atmosphere, 22(2), 233-243. DOI : 10.14191/ATMOS.2012.22.2.233