References
- S. Y. Shin, S. H. Lee & H. H. Han (2021). A Study on Residual U-Net for Semantic Segmentation based on Deep Learning. Journal of Digital Convergence, 19(6), 251-258. DOI : 10.14400/JDC.2021.19.6.251
- S. Y. Shin, S. H. Lee & J. S. Kim (2021) Modified DeepLabV3+ for Semantic Segmentation based on Deep Learning. The 11th International Conference on Convergence Technology. (pp.266-367). Jeju : KCS.
- S. Y. Shin, H. H. Han & S. H. Lee (2021). Improved YOLOv3 with duplex FPN for object detection based on deep learning. The International Journal of Electrical Engineering & Education, 002072092098352. DOI : 10.1177/0020720920983524
- E. Shelhamer, J. Long & T. Darrell. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. DOI : 10.1109/TPAMI.2016.2572683
- O. Ronneberger, P. Fischer & T. Brox. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9351, Issue Cvd, pp. 234-241). DOI : 10.1007/978-3-319-24574-4_28
- V. Badrinarayanan, A. Kendall & R. Cipolla. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. DOI : 10.1109/TPAMI.2016.2644615
- L. Chen, G. Papandreou, I. Kokkinos, K. Murphy & A. L. Yuille. (2014). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv preprint arXiv:1412.7062. 1-14. http://arxiv.org/abs/1412.7062
- L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy & A. L. Yuille. (2018). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834-848. DOI : 10.1109/TPAMI.2017.2699184
- L. Chen, G. Papandreou, F. Schroff & H. Adam. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv preprint arXiv:1706.05587. http://arxiv.org/abs/1706.05587
- L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff & H. Adam. (2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Pertanika Journal of Tropical Agricultural Science, 34(1), 833-851. DOI : 10.1007/978-3-030-01234-2_49
- E. Sovetkin, E. J. Achterberg, T. Weber & B. E. Pieters. (2021). Encoder-Decoder Semantic Segmentation Models for Electroluminescence Images of Thin-Film Photovoltaic Modules. IEEE Journal of Photovoltaics, 11(2), 444-452. DOI : 10.1109/JPHOTOV.2020.3041240
- F. Chollet. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017-Janua, 1800-1807. DOI : 10.1109/CVPR.2017.195
- K. He, X. Zhang, S. Ren & J. Sun. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- S. Estrada, S. Conjeti, M. Ahmad, N. Navab & M. Reuter. (2018). Competition vs. Concatenation in Skip Connections of Fully Convolutional Networks. In International Workshop on Machine Learning in Medical Imaging (pp. 214-222). Springer, Cham. DOI : 10.1007/978-3-030-00919-9_25
- M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth & B. Schiele. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016-Decem, 3213-3223. DOI : 10.1109/CVPR.2016.350
- I. Loshchilov & F. Hutter. (2019). Decoupled Weight Decay Regularization. 7th International Conference on Learning Representations, ICLR 2019. http://arxiv.org/abs/1711.05101