DOI QR코드

DOI QR Code

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation

반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교

  • Choi, Eun-Young (Department of Agricultural Science, Korea National Open University) ;
  • Jeong, Young-Ae (Department of Agriculture and Life Science, Korea National Open University) ;
  • An, Seung-Hyun (Department of Agricultural Science, Korea National Open University) ;
  • Jang, Dong-Cheol (Department of Horticulture, College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Dae-Hyun (Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University) ;
  • Lee, Dong-Soo (Department of Agricultural Engineering, Energy and Environmental Engineering Division) ;
  • Kwon, Jin-Kyung (Department of Agricultural Engineering, Energy and Environmental Engineering Division) ;
  • Woo, Young-Hoe (Department of Horticulture Environment System, Korea National College of Agriculture and Fisheries)
  • 최은영 (한국방송통신대학교 농학과) ;
  • 정영애 (한국방송통신대학교 대학원 농생명과학과) ;
  • 안승현 (한국방송통신대학교 농학과) ;
  • 장동철 (강원대학교 원예학과) ;
  • 김대현 (강원대학교 에너지공학과) ;
  • 이동수 (농촌진흥청 농업과학원) ;
  • 권진경 (농촌진흥청 농업과학원) ;
  • 우영회 (한국농수산대학 원예환경시스템학과)
  • Received : 2021.09.24
  • Accepted : 2021.10.25
  • Published : 2021.10.31

Abstract

This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

본 연구는 반밀폐형 토마토 재배 온실에서 광합성율 극대화를 위한 적정 탄산가스 시비 농도를 구명하고자 광합성 모델을 이용하여 잎의 최대 카복실화율(Vcmax), 최대 전자전달속도(Jmax), 열파괴, 잎 호흡 등을 계산하고 실제 측정값과 비교하였다. 다양한 광도(PAR 200µmol·m-2·s-1 to 1500µmol·m-2·s-1)와 온도(20℃ to 35℃) 조건에서 CO2 농도에 대한 A-Ci curve는 광합성 측정 기기를 사용하여 측정하였고, 모델링 방정식으로 아레니우스 함수값(Arrhenius function), 순광합성율(net CO2 assimilation, An), 열파괴(thermal breakdown), Rd(주간의 잎호흡)를 계산하였다. 엽온이 30℃ 이상으로 상승하였을 때 Jmax, An 및 thermal breakdown 예측치가 모두 감소하였고, 예측 Jmax의 가장 최고점은 엽온 30℃였으며 그 이상의 온도에서는 감소하였다. 생장점 아래 5번째 잎의 광합성율은 PAR 200-400µmol·m-2·s-1 수준에서는 CO2 600ppm, PAR 600-800µmol·m-2·s-1 수준에서는 CO2 800ppm, PAR 1000µmol·m-2·s-1 수준에서는 CO2 1000ppm, PAR 1200-1500µmol·m-2·s-1 수준에서는 CO2 1500ppm을 공급했을 때 포화점에 도달하였다. 앞으로 광합성 모델식을 활용하여 과채류 온실 재배 시 광합성을 높일 수 있는 탄산시비 농도를 추정할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

This study was conducted with the support of the Korea Smart Farm R&D Foundation (Project no. 118015-3) of Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry.

References

  1. Bernacchi C.J., E.L. Singsaas, C. Pimentel, A.R. Portis, Jr and S.P. Long 2001, Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253-259. doi:10.1111/j.1365-3040.2001.00668.x
  2. Caemmerer S.V. 2000, Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Collingwood, Victoria, Australia. pp 1-165.
  3. Campbell G.S., and JM. Norman 1998, Plants and plant communities. In GS Campbell and JM Norman, ed, Introduction to Environmental Biophysics. Springer, New York, pp 239-241.
  4. Collatz G.J., J.T. Ball, C. Grivet, and J.A. Berry 1991, Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration-a model that includes a laminar boundary-layer. Agric For Meteorol 54:107-136. doi:10.1016/0168-1923(91)90002-8
  5. Farquhar G.D., S. von Caemmerer, and J.A. Berry 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. doi:10.1007/BF00386231
  6. Harley P.C., R.B. Thomas, J.F. Reynolds, and B.R. Strain 1992, Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271-282. doi: https:10.1111/j.1365-3040.1992.tb00974.x
  7. Hikosaka K., K. Ishikawa, A. Borjigidai, O. Muller, and Y. Onoda 2006, Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291-302. doi:10.1093/jxb/erj049
  8. Jung D.H., J.H. Shin, Y.Y. Cho, and J.E. Son 2015, Development of a two-variable spatial leaf photosynthetic model of irwin mango grown in greenhouse. Protected Hort Plant Fac 24:161-166. (in Korean) doi:10.12791/KSBEC.2015.24.3.161
  9. Kattge J., and W. Knorr W 2007, Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176-1190. doi:10.1111/j.1365-3040.2007.01690.x
  10. Kim D.E., J.K. Kwon, S.J. Hong, J.W. Lee, and Y.H. Woo 2020, The effect of greenhouse climate change by temporary shading at summer on photo respiration, leaf temperature and growth of cucumber. Protected Hort Plant Fac 29:306-312. (in Korean) doi:10.12791/KSBEC.2020.29.3.306
  11. Leuning R. 2002, Temperature dependence of two parameters in a photosynthesis model. Plant Cell Environ 25:1205-1210. doi: https://doi.org/10.1046/j.1365-3040.2002.00898.x
  12. Medlyn B.E., D. Loustau, and S. Delzon 2002a, Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant Cell Environ 25:1155-1165. doi:10.1046/j.1365-3040.2002.00890.x
  13. Medlyn B.E., E. Dreyer, D. Ellsworth, M. Forstreuter, P.C. Harley, M.U.F. Kirschbaum, X. Le Roux, P. Montpied, J. Strassemeyer, A. Walcroft, K. Wang, and D. Loustau 2002b, Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167-1179. https://doi.org/10.1046/j.1365-3040.2002.00891.x
  14. Nederhoff E.M. 1987, Dynamic optimization of the CO2 concentration in greenhouses: an experiment with cucumber (Cucumis sativus L.). Acta Hortic 229:341-348. doi:10.17660/ActaHortic.1988.229.37
  15. Peet M.M., and D.H. Willits 1987, Greenhouse CO2 enrichment alternatives-effects of increasing concentration or duration of enrichment on cucumber yields. J Amer Soc Hort Sci 112:236-241. https://doi.org/10.21273/JASHS.112.2.236
  16. Sage R.F., and D.S. Kubien 2007, The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086-1106. doi:10.1111/j.1365-3040.2007.01682.x
  17. Sanchez-Guerrero M.C., P. Lorenzo, E. Medrano, N. Castilla, T. Soriano, and A. Baille 2005, Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agric For Meteorol 132:244-252. doi:10.1016/j.agrformet.2005.07.014
  18. Scarascia-Mugnozza G., P.D. Angelis, G. Matteucci, R. Valentini 1996, Long-term exposure to elevated [CO2] in a natural Quercus ilex L. community: Net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant Cell Environ 19:643-654. doi:10.1111/j.1365-3040.1996.tb00399.x
  19. Sharkey T.D. 1985, Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53-105. doi:10.1007/BF02861058
  20. Sharkey T.D., C.J. Bernacchi, G.D. Farquhar, and E.L. Singsaas 2007, Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30: 1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x