DOI QR코드

DOI QR Code

Analysis of Faculty Perceptions and Needs for the Implementation of AI based Adaptive Learning in Higher Education

대학 교육에서 인공지능 기반 적응형 학습 구현을 위한 교수자 인식 및 요구분석

  • Received : 2021.08.19
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

This study aimed to analyze the level of professors' understanding and perception of adaptive learning and proposed how college can implement successful adaptive learning in college classes. For research purposes, online survey was conducted by 162 professors of A university in capital region. As a result, professors seemed to feel pressure to provide students personalized feedback and gave concerned that students don't study enough in advance before participating in class. It was also found that professors realized that they have low level of understanding about adaptive learning, while they revealed intention to make use of adaptive learning in their class. They also answered that adaptive learning system is the most helpful support for encouraging professors to apply adaptive learning in real class. We proposed what is required to encourage professor to implement adaptive learning in their class.

인공지능을 활용한 적응형 학습은 최근 국내 대학들이 직면하고 있는 학생들의 기초학력 저하와 학습격차 증가 등의 문제해결을 위한 방편이 될 수 있다. 인공지능 기반 적응형 학습이 성공적으로 대학 수업에 도입되고 실천되기 위해서는 교수자의 적극적인 관심과 참여가 요구된다. 이에 본 연구에서는 대학 교수들을 대상으로 적응형 학습에 대한 인식을 분석하여 대학 수업에서의 적응형 학습 구현을 위한 방안을 제안하고자 하였다. 이를 위하여 수도권 소재 A대학 교수들을 대상으로 온라인 설문을 통해 자료를 수집하였으며, 162명의 교수들이 응답에 참여하였다. 설문 분석 결과 교수들은 학생 맞춤형 피드백 제공의 어려움, 학생들의 사전학습 부족 및 기초학력 저하를 수업 운영에서의 문제로 높게 인식하고 있었다. 또 적응형 학습에 대한 교수들의 지식 수준은 낮았지만, 적응형 학습 적용 의향은 높은 것으로 나타났다. 적응형 학습 적용을 위한 지원방안으로는 활용이 쉽고 유용한 적응형 학습 시스템 제공에 대한 요구가 가장 높았다. 이러한 결과를 바탕으로 대학에서의 적응형 학습 적용의 가능성을 논의하고, 적응형 학습의 성공적 도입과 적용을 위한 구체적인 방안을 제언하였다.

Keywords

References

  1. M. Chung & Y. Yang. (2016). A study on basic learning ability support system for university students: Based on professors and students' perception and needs. Journal of Education & Culture, 22(2), 101-126. https://doi.org/10.24159/joec.2016.22.2.101
  2. J. Lee. (2018). A case study on basic learning ability achievement in the field of basic mechanics for students with poor basic learning ability. Journal of Practical Engineering Education, 10(2), 95-102. https://doi.org/10.14702/JPEE.2018.095
  3. M. Brown., M. McCormack, J. Reeves., C. Brooks., & S. Grajek. (2020). EDUCAUSE Horizon Report. Teaching and Learning Edition. Louisville, CO: EDUCAUSE.
  4. M. M. Tesene. (2018). Adaptable selectivity: A case study in evaluating and selecting adaptive learning courseware at Georgia State University, Current Issues in Emerging eLearning. 5(1), 62-79.
  5. Tyton & Babson Survey Research Group. (2021). Making the Case for Courseware. Everylearner Everywhere.
  6. K. Vignare., E. C. Lammers., J. Greenwood., T. Buchan., M. Tesene., J. DeGruyter., D. Carter., R. Luke., P. O'Sullivan., K. Berg., D. Johnson., & S. Kruse. (2018). A guide for implementing adaptive courseware: From planning through scaling. Joint publication of Association of Public and Landgrant Universities and Every Learner Everywhere.
  7. J. H. Shin., J. W. Choi., & W. Koh. (2015). A study on the use of learning analytics in higher education: Focusing on the perspective of professors. Journal of Educational Technology, 31(2), 223-252. https://doi.org/10.17232/KSET.31.2.223
  8. Every learner Everywhere, (2021). Case Study: Arizona State University (ASU). https://www.everylearnersolve.com/asset/Li3qFXe6MCjV7hOUYhR7
  9. C. Johnson & E. Zone. (2016). Want Adaptive Learning To Work? Encourage Adaptive Teaching. Here's How. https://www.edsurge.com/news/2016-09-23-want-adaptive-learning-to-work-encourage-adaptive-teaching-here-s-how
  10. H. Ajjan & R. Hartshorne. (2008). Investigating faculty decisions to adopt Web 2.0 technologies: Theory and empirical tests. The Internet and Higher Education, 11(2), 71-80. https://doi.org/10.1016/j.iheduc.2008.05.002
  11. E. T. Straub. (2009). Understanding technology adoption: Theory and future directions for informal learning. Review of Educational Research, 79(2), 625-649. https://doi.org/10.3102/0034654308325896
  12. S. A. Becker., M. Brown., E. Dahlstrom., A. Davis., K. DePaul., V. Diaz. & J. Pomerantz. (2018). NMC Horizon Report: 2018 Higher Education Edition. Louisville, CO: Educause.
  13. Educause. (2017). 7 Things You Should Know About Adaptive Learning. https://library.educause.edu/resources/2017/1/7-things-you-should-know-about-adaptive-learning
  14. M. S. Choi & J. S. Chung. (2019). Learning analysis technology used in adaptive learning situation: Focusing on domestic and overseas cases, Proceedings of the 2019 Spring Conference of The Korean Society For Educational Technology, 2019(1), 215-221.
  15. A. Mavroudi., M. Giannakos. & J. Krogstie. (2018). Supporting adaptive learning pathways through the use of learning analytics: developments, challenges and future opportunities. Interactive Learning Environments, 26(2), 206-220. https://doi.org/10.1080/10494820.2017.1292531
  16. R. Luckin. W. Holmes., M. Griffiths. & L. B. Forcier. (2016). Intelligence Unleashed: An argument for AI in Education. London: Pearson Education.
  17. L. Pugliese. (2016). Adaptive Learning Systems: Surviving the Storm. EDUCAUSE Review, October 17, 2016
  18. P. Baker. (2020). 7 Ways Faculty Use Adaptive Learning: Lessons From A Pilot Of 40 Gateway Courses. https://www.everylearnereverywhere.org/7-ways-faculty-use-adaptive-learning-lessons-from-a-pilot-of-40-gateway-courses/
  19. C. Johnson & E. Zone. (2018). Achieving a scaled implementation of adaptive learning through faculty engagement: A case study. Current Issues in Emerging eLearning, 5(1), 80-95.
  20. S. Oxman & W. Wong. (2014). White paper: Adaptive learning systems. Integrated Education Solutions, 6-7.
  21. D. J. Shin. (2020). An analysis prospective mathematics teachers' perception on the use of Artificial Intelligence(AI) in mathematics education. Communications of Mathematical Education, 34(3), 215-234. https://doi.org/10.7468/JKSMEE.2020.34.3.215
  22. H. J. Han, K. J. Kim, & H. S. Kwon. (2020). The analysis of elementary school teachers' perception of using Artificial Intelligence in education. Journal of Digital Convergence, 18(7), 47-56. https://doi.org/10.14400/JDC.2020.18.7.047
  23. H. Kim, J. Park., S. Hong., Y. Park., E. Y. Kim., J. Choi., & Y. Kim. (2020). Teachers' perceptions of AI in school education. Journal of Educational Technology, 36(3), 905-930. https://doi.org/10.17232/KSET.36.3.905