DOI QR코드

DOI QR Code

A Study on the Personal and Social Acceptability of Personal Information Disclosure of COVID-19 Confirmed Patients

코로나19 확진자 개인정보 공개의 개인적, 사회적 수용성에 관한 연구

  • Oh, Juyeon (Center for Security Convergence & eGovernance, Inha University) ;
  • Suh, Woojong (Program in Industrial Security Governance, Inha University)
  • 오주연 (인하대학교 융합보안e거버넌스센터) ;
  • 서우종 (인하대학교 산업보안거버넌스전공)
  • Received : 2021.08.20
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

In a disaster situation such as COVID-19, our society has experienced the spread of the damage due to confirmed patients who have a negative or uncooperative attitude toward the disclosure of personal information. Accordingly, this study aims to find a policy direction that can improve the awareness of the disclosure of personal information about confirmed COVID-19 patients. This study classified the concept of acceptability into personal and social acceptability, and statistically verified their relationship with influential factors. In this study, 594 cases of data collected through an online survey were used. The analysis results show that the greater the trust in the government's personal information management capability, the lower the perception of the risks associated with the disclosure of personal information, and the lower the awareness of the risk, the higher the personal and social acceptability of the personal information disclosure of COVID-19 confirmed patients. In addition, the greater the recognition of the utility of personal information disclosure, the higher the perception of personal and social acceptability of the personal information disclosure. It is expected that the analysis results and discussions of this study will be useful information for policy development to create a more mature social atmosphere to reduce the public's reluctance to disclose information not only in COVID-19 but also in new disaster situations in the future.

코로나19와 같은 재난 상황에서 우리 사회는 개인정보 공개에 대해 부정적인 또는 비협조적인 태도를 가진 확진자들로 인해 코로나19의 피해가 확산되는 경험을 해왔다. 이에 따라 본 연구는 코로나19 확진자의 개인정보 공개에 대한 인식을 개선시킬 수 있는 정책적 방향을 모색해보고자 한다. 본 연구는 수용성의 개념을 개인적 수용성과 사회적 수용성으로 구분하여 그것들의 영향요인들과의 관계를 통계적으로 검증하였다. 본 연구에서는 온라인 설문조사를 통해 수집한 594부의 자료를 사용하였다. 분석 결과, 정부의 개인정보 관리역량에 대한 신뢰가 클수록 개인정보 공개에 따르는 위험성에 대한 인식이 낮아지는 것으로 나타났으며, 이러한 인식이 낮을수록 코로나19 확진자의 개인정보 공개에 대한 개인적, 사회적 수용성이 높아지는 것으로 나타났다. 또한, 개인정보 공개에 대한 효용성을 크게 인식할수록 개인정보 공개에 대한 개인적, 사회적 수용성에 대한 인식이 높게 나타났다. 본 연구의 분석 결과와 논의는 향후 코로나 19 뿐만 아니라 미래의 새로운 재난 상황에서도 국민들의 정보공개 거부감을 감소시킬 수 있도록 보다 성숙된 사회적 분위기를 조성하기 위한 정책 개발에 유용한 정보로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A5C2A03081234). 이 논문은 인하대학교의 지원에 의하여 연구되었음.

References

  1. S. H. Shin. (October 7, 2020). [2020 parliamentary inspection] Use 140 Million QR Codes related to COVID- 19..."Management Manual Insufficient". Aju Business Daily. https://www.ajunews.com/view/20201007102419851
  2. D. H. Park. (October 7, 2020). "Discovered the Entry and Exit List in Junk shop.". Trying to Stop The Spread of COVID-19, But Personal Information is Spreading. Seoul Economic Daily. https://sedaily.com/NewsView/1Z91G99CAH
  3. J. S. Yoon. (April 10, 2020). Track Confirmed person's Movements in 10 minutes. COVID-19 Epidemiological Survey System Noted by the World..Yonhap News Agency. https://www.yna.co.kr/view/AKR20200410149400003?section=search
  4. I. H. Lee, W. Song & J. Y. Lee. (2016). Aggregation-induced Emission Type thermally Activated Delayed Fluorescent Materials for High Efficiency in Non-doped Organic Light-Emitting Diodes. Organic Electronics, 29(2), 22-26. DOI : 0.1016/j.orgel.2015.11.019. https://doi.org/10.1016/j.orgel.2015.11.019
  5. H. K. Son. (July 20, 2020). Incheon Academy Instructor Arrested for 7th Infection…"Lying in Shock". Yonhap News Agency. https://www.yna.co.kr/view/AKR20200720030451065
  6. H. K. Son. (September 15, 2020). 'Lie' Tears of Regret from Incheon Academy Instructor...Two years in Prison. Yonhap News Agency. https://www.yna.co.kr/view/AKR20200915075851065
  7. Y. S. Oh. (January 21, 2021). Corona 'Collective infection' … Shincheonji 16% Largest single Scale. Nocut News. https://www.nocutnews.co.kr/news/5486472
  8. S. W. Park. (July 20, 2021). "Because of the flu"...A confirmed Officer who Hid his Movements, Sent him to the Prosecution. Sisa Journal. http://www.sisajournal.com/news/articleView.html?idxno=221136.
  9. J. M. Lee. (April 5, 2021). "It's not intentional," Said Rev. couple, Who Hid their Movements despite Confirmed Coronavirus. mediajeju. http://www.mediajeju.com/news/articleView.html?idxno=329641
  10. L. J. Frewer, K. G. Grunert & L. Bredahi. (1998). Consumer Attitudes and Decision-Making with regard to Genetically Engineered Food Products - A Review of the Literature and a Presentation of Models for Future Research. Journal of Consumer Policy, 21, 251-277. DOI : 10.1023/A:1006940724167
  11. J. B. Chung, H.-K. Kim & S. K. Rho. (2008). Analysis of Local Acceptance of a Radioactive Waste Disposal Facility. Risk Analysis, 28(4), 1021-1032. DOI : 10.1111/j.1539-6924.2008.01074.x
  12. D. M. Rousseau, S. B. Sitkin, R. S. Burt & C. Camerer. (1998). Introduction to Special Topic Forum: Not so Different after All: A Cross-Discipline View of Trust. The Academy of Management Review, 23(3), 393-404. DOI : 10.5465/AMR.1998.926617
  13. J. Mishra & M. A. Morrissey. (1990). Trust in Employee/Employer Relationships: A Survey of West Michigan Managers, Public Personnel Management, 19(4), 443-486. DOI : 10.1177/009102609001900408
  14. S. Atkinson & D. Butcher. (2003). Trust in Managerial Relationships. Journal of Managerial Psychology, 18(4), 282-304. DOI : 10.1108/02683940310473064
  15. L. Keele. (2007). Social Capital and the Dynamics of Trust in Government. American Journal of Political Science, 51(2), 241-254. DOI : 10.1111/j.1540-5907.2007.00248.x
  16. D. W. Kim & S. J. Lee. (2008). The Effect of Trust in Government on Citizen Participation. Korean society and public administration, 18(4), 43-62.
  17. B. Barber. (1983). The Logic and Limits of Trust New Brunswick. New Jersey : Rutgers University Press.
  18. S. C. Craig. (1993). The Malevolent Leaders: Popular Discontent in America. Boulder, Colorado : Westview Press.
  19. M. J. Hetherington. (1998). The Political Relevance of Political Trust. American Political Science Review, 92(4), 791-808. DOI : 10.2307/2586304
  20. A. H. Miller. (1974). Political Issues and Trust in Government. American Political Science Review, 68(3), 951-972. DOI : 10.2307/1959140
  21. J. K. Cha & T. G. Yoo. (2018). Characteristics of the Determinants of Trust in Local Government: A Case Study of Gwangju Metropolitan City. Journal of Northeast Asian Studies, 23(1), 167-184. DOI : 10.21807/jnas.2018.03.23.1.167
  22. J. S. Choi & Y. C. Kang. (2012). Determinants of Trust in Risk Management: A Case of Kori Nuclear Plant. Journal of Governmental Studies, 18(3), 325-358.
  23. W. A. Gamson. (1968). Power and Discontent. Homewood,.Illinois: Dorsey Press.
  24. J. D. Aberbach. (1969). Alienation and Political Behavior. The American Political Science Review, 63(1), 86-99 DOI : 10.2307/1954286
  25. R. D. Putnam, (1995). Bowling Alone: America's Declining Social Capital. Journal of Democracy, 6(1), 65-78. DOI : 10.1353/jod.1995.0002
  26. S. J. Kim. (2002). State Capacity and Economic Statecraft. Seoul : Ewha Womans University Press.
  27. S. A. Park. (2006). Perceptions toward Government and Government Trust: Focusing on Undergraduate Students in Korea, Korean Public Administration Review, 40(2), 73-97.
  28. F. D. Schoorman, F. C. Mayer & J. H. Davis. (1995). An Integrative Model Of Organizational Trust : Past, Present, And Future. The Academy of Management Review, 20(3), 709-734. DOI : 10.5465/AMR.1995.9508080335
  29. R. Wakefield. (2013). The Influence of User Affect in Online Information Disclosure. The Journal of Strategic Information Systems. 22(2), 157-174. DOI : https://doi.org/10.1016/j.jsis.2013.01.003
  30. S. U. Yun. (2018). Study on the Determinant Factors of Intention to Provide Personal Information in the Big Data Era. Journal of Communication Science. 18(1). 52-78. DOI : 10.14696/jcs.2018.03.18.1.5
  31. S. H. Kim & J. K. Kim. (2017). A Meta-Analysis on Privacy Concern in Korean Research. Korean Management Review, 46(2), 595-622. DOI : 10.17287/kmr.2017.46.2.595
  32. P. A. Pavlou, H. Liang & Y. Xue. (2007). Understanding and Mitigating Uncertainty in Online Exchange Relationships: A Principle-Agent Perspective. MIS Quarterly, 31(1), 105-136. DOI : 10.2307/25148783
  33. C. Van Slyke, J. T. Shim, R. Johnson & J. J. Jiang (2006). Concern for Information Privacy and Online Consumer Purchasing. Journal of the Association for Information Systems, 7(6), 415-444. DOI : 10.17705/1jais.00092
  34. S. T. Margulis. (2003) Privacy as a Social Issue and Behavioral Concept. Journal of Social Issues, 59(2), 243-261. DOI 10.1111/1540-4560.00063
  35. C. W. Park, J. W. Kim & H. J. Kwon. (2016). An Empirical Research on Information Privacy Risks and Policy Model in the Big data Era. The Jounal of Society for e-Business Studies, 21(1), 131-145. DOI : https://doi.org/10.7838/jsebs.2016.21.1.131
  36. K. Min. (2009). The Impact of Local Residents' Rurality on Policy Acceptance -A Case of Ropeway Establishment in Mt. Halla-. Korean Governance Review, 16(3), 53-71. DOI : 10.17089/kgr.2009.16.3.003
  37. S. W. Hwang, H. J. Kim & I. C. Chang, (2018). What Factors are Influential in Public Acceptance of Nuclear Energy? Based on the Survey for the Residents in Pusan, Ulsan, and Kyungnam. Journal of Practical Research in Advertising and Public Relations, 11(4), 135-164. DOI : 10.21331/jprapr.2018.11.4.006
  38. M. J. Lee, J, S, Jung. & K. S. Park. (2014). The Influence of the Perceived Risk, Perceived Usefulness, and Transparency in the Development of Nuclear Power on Public Acceptability : Using the Trust of Korea Hydro and Nuclear Power(KHNP) Company as a Mediator. Korean Corporation Management Review. 21(4). 253-279.
  39. K. T. Lee & J. H. Mok. (2016). The Determinant Analysis on the Public Acceptance of the Korean Nuclear Power Policy. Journal of Governance Studies, 11(3), 55-85. DOI : 10.16973/jgs.2016.11.3.003
  40. J. H. Mok. (2017). Moderating Effect of Knowledge Level on the Risk and Acceptance Relationship: The Case of Korean Nuclear Policy. The Korea Association for Policy Studies, 26(2), 419-449.
  41. J. B. Chung & H. K. Kim. (2009). Competition, Economic Benefits, Trust and Risk Perception in Siting a Potentially Hazardous Facility. Landscape and Urban Planning, 91, 8-16. DOI : https://doi.org/10.1016/j.landurbplan.2008.11.005
  42. D. J. Kim , B. H. Chung, J. H. Chang (2013). A Comparative Analysis of Social and Personal Level Acceptance of Nuclear Energy : Centered on Implications for Building Public Relations Strategies. Korean Journal of Journalism & Communication Studies, 57(5), 214-238.
  43. L. Huang, Y. Zhou, Y. Han, J. K. Hammitt, J. B, & Y. Liu.. (2013). Effect of the Fukushima Nuclear Accident on the Risk Perception of Residents near a Nuclear Power Plant in China. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 19742-19747. DOI : https://doi.org/10.1073/pnas.1313825110
  44. C. Starr. (1969). Social Benefit versus Technological Risk. Science New Series, 165(3899), 1232-1238. DOI : 10.1126/science.165.3899.1232
  45. J. Flynn, P. Slovic & C. K. Mertz. (1994). Gender, Race, and Perception of Environmental Health Risks. Risk Analysis, 14(6), 1101-1108. DOI : 10.1111/j.1539-6924.1994.tb00082.x
  46. M., Greenberg, K. Lowrie, J. Burger, C. Powers, M. Gochfeld & H. Mayer. (2007), The Ultimate LULU? Public Reaction to New Nuclear Activities at Major Weapons Sites. Journal of American Planning Association, 73(3), 346-351. DOI : https://doi.org/10.1080/01944360708977982
  47. N. K. Malhotra, S. S. Kim & J. Agarwal. (2004). Internet Users' Information Privacy Concerns (IUIPC): The Construct, the Scale, and a Causal Model. Information Systems Research, 15(4), 336-355. DOI : 10.1287/isre.1040.0032
  48. J. K. Kim & D. W. Oh. (2016). The Effect of Privacy Policy Awareness on the Willingness to Provide Personal Information Electronic Commerce. Information Systems Review, 18(3), 185-207. DOI : 10.14329/isr.2016.18.3.185
  49. H. H. Min, S. B. Park, J. S. Jung & K. S. Han. (2016). The Factors Affecting Provision Intention of Individual Information in the Big Data Era. The Journal of Internet Electronic Commerce Research, 16(1), 95-117.
  50. M. Y. Oh, J. M. Choi & H. S. Kim. (2008). Stigma Effect of Technology with Risk: the Impact of Stigma on Nuclear Power on the Perception and Acceptance of Products based on Radiation Technology. Korean Society For Journalism And Communication Studies, 52(1), 467-500.
  51. H. I. Kim & D. S. Han. (2003). The Public's Attitude toward the Use of the Media and Nuclear Power. Nuclear Industry, 23(11), 9-20.
  52. J. Flynn, W. Burns, C. K. Mertz & P. Slovic. (1992). Trust as a Determinant of Opposition to a High Level Radioactive Waste Repository: Analysis of a Structural Model. Risk Analysis, 12(3), 417-429. DOI : 10.1111/j.1539-6924.1992.tb00694.x
  53. T. Dinev & P. Hart. (2006). An Extended Privacy Calculus Model for E-Commerce Transactions, Information Systems Research, 17(1), 61-80. DOI : 10.1287/isre.1060.0080
  54. G. Bansal, F. M. Zahedi & D. Gefen. (2016). Do Context and Personality Matter? Trust and Privacy Concerns in Disclosing Private Information Online. Information & Management, 53(1), 1-21. DOI : 10.1016/j.im.2015.08.001
  55. M. Siegrist & G. Cvetkovich. (2000). Perception of Hazards: The Role of Social Trust and Knowledge. Risk Analysis, 20(5), 713-719. DOI : 10.1111/0272-4332.205064
  56. Y. C. Shin & C. S. Ahn. (2009). A Study on the Social Acceptability of Nuclear Power Plants - Focused on the Mediating Effect of Local Government Policy Capabilities. Korean Association For Policy Science, 13(3), 189-211.
  57. J. S. Shim. (2009). Trust in Nuclear Power Plant, Perceived Risk and Benefit, and Acceptance. The Korean Association for Policy Studies, 18(4), 93-123.
  58. W. W. Chin. (1998). Modern Methods for Business Research.. Brighton: Psychology Press.
  59. C. M. Ringle, M. Sarstedt & D, W. Straub. (2012). Editor's Comments: A Critical Look at the Use of PLS-SEM in "MIS Quarterly". MIS Quarterly, 36(1), 3-14. DOI : 10.2307/41410402
  60. J. F. Hair, C. M. Ringle & M. Sarstedt. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152, DOI : 10.2753/MTP1069-6679190202
  61. J. F. Hair, C. M. Ringle & M. Sarstedt. (2012). Partial Least Squares: The Better Approach to Structural Equation Modeling?. Long Range Planning, 45(5-6), 312-319. DOI : 10.1016/j.lrp.2012.09.011
  62. Gefen, D. and Straub, D. (2005). A Practical Guide to Factorial Validity using PLS-Graph: Tutorial and Annotated Example. Communications of the Association for Information Systems, 16(1), 91-109. DOI : 10.17705/1CAIS.01605
  63. C. Fornell & D. F. Larcker. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388. DOI : 10.1177/002224378101800313
  64. Sosik, J. J., Kahai, S. S. & Piovoso, M. J. (2009). Silver Bullet or Voodoo Statistics? A Primer for Using the Partial Least Squares Data Analytic Technique in Group and Organization Research. Group & Organization Management, 34(1), 5-36. DOI : 10.1177/1059601108329198
  65. Hair, J. F., Hult, G. T. M., Ringle, C. M. & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling(PLS-SEM), 2nd edition, Sage, Thousand Oaks, CA