DOI QR코드

DOI QR Code

A Study on the intentions of early users of metaverse platforms using the Technology Acceptance Model

기술수용모델을 활용한 메타버스 플랫폼 초기 이용자들의 이용 의도에 관한 연구

  • Park, Sunkyung (Department of Beauty Health, NamSeoul University) ;
  • Kang, Yoon Ji (Department of Media and Communication, Inha University)
  • 박선경 (남서울대학교 뷰티보건학) ;
  • 강윤지 (인하대학교 미디어커뮤니케이션학과)
  • Received : 2021.07.26
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

The purpose of this study is to empirically identify the process of technology acceptance of the metaverse, a virtual world-based platform that has attracted attention due to the 4th industrial revolution and the COVID-19 pandemic. The technology acceptance model (TAM) was used to identify factors affecting the use of the metaverse platforms and to analyze the causal relationship among these factors. For research, a survey was conducted on ordinary adult men and women and was analyzed using a structural equation model. The study found that perceived pleasure, interactivity, self-efficacy, and social influence had a positive effect on perceived ease-of-use. Interactivity and social influence had a statistically significant effect on perceived usefulness. The relationship between perceived ease-of-use and perceived usefulness was not statistically significant, but both perceived ease-of-use and perceived usefulness had a significant effect on positively forming attitudes toward metaverse. Lastly, favorable attitudes toward the metaverse platform had a positive effect on the intention to continue using it. Through this study, it was possible to identify the factors affecting the intention to use the metaverse and to confirm the causal relationship between the factors. A deeper understanding of users may be obtained in future if the research subject can be expanded and investigated with various factors.

본 연구는 4차 산업혁명과 코로나19 팬데믹으로 주목받고 있는 가상세계 기반의 플랫폼인 메타버스의 기술수용의도 과정을 실증적으로 파악함에 목적이 있다. 이에 메타버스 플랫폼 이용에 영향을 미치는 요인을 확인하고 요인 간 인과관계를 분석하기 위해 기술수용모델(TAM)을 활용하였다. 연구방법으로써 일반 성인남녀를 대상으로 설문을 수행하였고, 구조방정식 모델을 이용해 분석하였다. 연구결과, 지각된 용이성에는 지각된 즐거움, 상호작용성, 자기효능감, 사회적 영향이 긍정적 영향을 미쳤다. 지각된 유용성에는 상호작용성과 사회적 영향이 통계적으로 유의한 영향을 미쳤다. 지각된 용이성이 지각된 유용성에 미치는 영향 관계는 통계적으로 유의하지 않았으나, 지각된 용이성과 지각된 유용성은 모두 메타버스에 대한 태도를 긍정적으로 형성하는데 유의미한 영향을 미쳤다. 마지막으로 호의적인 메타버스 플랫폼에 대한 태도는 지속적 이용 의도에도 긍정적 영향을 미쳤다. 본 연구를 통해 메타버스에 대한 이용 의도에 영향을 미치는 요인을 확인하고 요인 간 인과관계를 확인할 수 있었으며, 메타버스 기술 채택의 요인 및 이용자 연구를 위한 기초자료로써 의의가 있다. 향후에는 연구대상을 확장하고, 다양한 요인을 활용하여 연구한다면 이용자에 대한 심도 깊은 이해가 가능할 것이다.

Keywords

References

  1. K. H. Hwang, J. Y. Jung, O. B. Kwon (2020). A study on the factors affecting the continuous visibility of metabuses in the virtual world. Digital Inclusion in Post Pandemic Era, 43-46.
  2. W. H. Kim (2021). Metaverse Marketing, Genesis: #Metaverse #Metaverse Marketing Lab #Roblocks #Zepetto #Snowcrash, Marketing, 55(5), 9-16.
  3. S. W. Jeong, S. Y. Kim, J. S. So, S. P. Jeong, Y. J. Jeong, B. K. Jo, H. H. Cho & H. Y. Choi (2021). [Student Reporters' News] The Metaverse is coming. Review of Architecture Building Science, 65(3), 58-61.
  4. S. Y. Ko, H. K. Jeong, J. I. Kim & Y. T. Shin (2021). The Concept and development directions of metaverse. Korea Information Processing Society Review, 28(1), 7-16.
  5. H. G. Park (2021). Metaverse world. Marketing, 55(5), 42-51.
  6. Sisajournal (2021.04.08.). Market size is 315 trillion won. What's Metaverse? Available from: http://www.sisajournal.com/news/articleView.html?idxno=214184
  7. S. Kim & H. Choi (2016). A study on history education content development plan utilized the metaverse. Korea Contents Association Academic Conference Proceeding, 161-162.
  8. H-J. Jang & G-Y. Noh (2017). Extended technology acceptance model of VR head-mounted display in early stage of diffusion. Journal of Digital Convergence, 15(5), 353-261. https://doi.org/10.14400/JDC.2017.15.5.353
  9. W. Choi, D. Kang & S. M. Choi (2017). Understanding factors influencing usage and purchase intention of a VR device: An extension of UTAUT2. Information Society & Media, 18(3), 173-208.
  10. J. D. N. Dionisio, W. G. B. Ill, & R. Gilbert (2013). 3D Virtual worlds and the metaverse: Current status and future possibilities. ACM Computing Surveys, 45(3), 1-38.
  11. S. E. Seo (2008). A study on R&D trends and propects of Metaverse. Journal of The Korean Society for Computer Game, 12, 15-23.
  12. J. M. Smart, J. Cascio, & J. Paffendorf (2007). Metaverse roadmap overview. Acceleration Studies Foundation.
  13. F. D. Davis (1989). Perceived usefulenss, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  14. M. Liu, J-Y. Park, & H-E. Lee (2021). Technology acceptance model in live commerce context: The effect of para-social interactivity and source characteristics on consumers' shopping intention on live commerce platform. Journal of the Korea Contents Association, 21(6), 138-154. https://doi.org/10.5392/JKCA.2021.21.06.138
  15. J. An (2019). Technology acceptance and influencing factor of anatomy learning using augmented reality: Usability based on the technology acceptance model. Journal of the Korea Convergence Society, 10(12), 487-494. https://doi.org/10.15207/JKCS.2019.10.12.487
  16. R. Qiao & D. Han (2019). A study on the reuse intention of virtual reality(VR) content using technology acceptance model. Journal of Korea Game Society, 19(5), 115-131. https://doi.org/10.7583/JKGS.2019.19.5.115
  17. S. Kwon & J. Son (2021). Factors affecting the viewing intention for untact performance using value-based acceptance model. Journal of Region & Culture, 8(2), 49-68. https://doi.org/10.26654/iagc.2021.8.2.049
  18. S. M. Woo & D. R. Chang (2021). A study on metaverse brand communication in trans-media environment. A Journal of Brand Design Association of Korea, 19(2), 29-48. https://doi.org/10.18852/BDAK.2021.19.2.29
  19. A. Bandura. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122-147. https://doi.org/10.1037//0003-066X.37.2.122
  20. C. S. Onga, J. Y. Laia, & Y. S. Wangb (2003). Actors affecting engineers' acceptance of asynchronous e-learning systems in high-tech companies. Information and Management, 41(6), 795-804. https://doi.org/10.1016/j.im.2003.08.012
  21. V. Venkatesh., & F. D. Davis (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  22. E. M. Rogers (1995). Diffusion of Innovations(4th ed.), New York: The Free Press.
  23. C-H. Jin & H-C. Yeo (2011). Exploring the acceptance decision factors of social media: The relationship between self-efficacy, self-assertion, self-presence, social-cultural-influences and TAM. Journal of Industrial Economics and Business, 24(3), 1295-1321.
  24. I. Ajzen, & M. Fishbein. (1980). Understanding attitudes and predicting social behavior. Prentice-Hall, Englewood, NJ.
  25. J. Webster, L. K. Trevino, & L. Ryan (1993). The dimensionality and correlates of flow in human-computer interaction. Computers in Human Behavior, 9, 477-426.
  26. S. J. McMillan, & J. S. Hwang (2002). Measures of perceived interactivity: An exploration of the role of direction of communication, user control, and time in shaping perceptions of interactivity. Journal of Advertising, 31(3), 29-42. https://doi.org/10.1080/00913367.2002.10673674
  27. T-Y. Park & J-W. Nam (2017). The effects of perceived interactivity on information acceptance in mobile health information service. Journal of the Korean Society for Information Management, 34(3), 151-177. https://doi.org/10.3743/KOSIM.2017.34.3.151
  28. W. Cha (2019). A study on the advertising acceptance of audiences toward the Cinema advertising using NFC technology-using extended technology acceptance model and interactivity. Journal of Digital Contents Society, 20(11), 2131-2140. https://doi.org/10.9728/dcs.2019.20.11.2131
  29. S-Y. Kim, S. H. Lee & H-S. Hwang (2011). A study of the factors affecting adoption of a smartphone. Entrue Journal of Information Technology, 10(1), 29-39.
  30. J. Moon & Y. Kim (2001). Extending the TAM for a world-wide-web context. Information and Management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6
  31. E-H. Oh (2012) A study on main features of SNS affecting SNS user acceptance decision. Management & Information Systems Review, 31(3), 47-73. https://doi.org/10.29214/damis.2012.31.3.003
  32. J. K. Song, M. R. Kim, S. J. Kim & S. H. Park(2014). The elaborating role of self-efficacy in adopting mobile sports application: From ELM perspectives. Korean Society For Sport Management, 19(5), 121-137.
  33. V. Venkatesh, M. G. Morris, G. Davis, & F. Davis(2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  34. J. Y. L. Thong, S. J. Hong, & K. Y. Tam (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810. https://doi.org/10.1016/j.ijhcs.2006.05.001
  35. B. Yang (2005). An integrated model of attitudes toward wireless marketing. Advertising Research, 69, 139-163.
  36. S. H. Hong (2000). The criteria for selecting appropriate fit indices in structural equation modeling and their rationales. Korean Journal of Clinical Psychology, 19(1), 161-177.
  37. C. Fornell, & D. F. Larcker (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18(1), 39-50. https://doi.org/10.2307/3151312
  38. J. H. Jeon. (2021). A study on the principle of metaverse composition with a focus on Roblox. Visual Culture, 38, 257-279.