Acknowledgement
본 연구는 한국과학재단이 주관하는 대학중점연구소지원사업(No. NRF-2018R1A6A1A07025819)과 신진연구지원사업(No. NRF-2020R1C1C1005406)의 지원을 받아 수행되었습니다.
References
- Acuna, D., Ling, H., Kar, A., Fidler, S. (2018) Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++, IEEE Conference on Computer Vision and Pattern Recognition, pp.859~868.
- Association, Telecommunications Technology (2021a) AI Dataset Construction Guidebook (Ministry of Science and ICT).
- Association, Telecommunications Technology (2021b) AI Learning Data Quality Management Guidelines v1.0.
- Baji, T. (2018) Evolution of the GPU Device widely used in AI and Massive Parallel Processing, IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp.7~9.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2020) An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale, Computer Vision and Pattern Recognition (cs.CV), arXiv preprint arXiv:2010.11929.
- Dutta, A., Gupta, A., Zissermann, A. (2016) VGG Image Annotator (VIA), http://www.robots.ox.ac.uk/~vgg/software/via.
- Felzenszwalb, P., McAllester, D., Ramanan, D. (2008) A Discriminatively Trained, Multiscale, Deformable Part Model, IEEE Conference on Computer Vision and Pattern Recognition, pp.1~8.
- Girshick, R. (2015) Fast R-CNN, Proc. IEEE International Conference on Computer Vision, pp.1440~1448.
- Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, IEEE Conference on Computer Vision and Pattern Recognition, pp.580~587.
- He, K., Gkioxari, G., Dollar, P., Girshick, R. (2017) Mask R-CNN, IEEE International Conference on Computer Vision, pp.2961~2969.
- He, K., Zhang, X., Ren, S., Sun, J. (2016) Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition, pp.770~778.
- Heo, S.J., Chunwei, Z., Yu, E.J. (2018) Response Simulation, Data Cleansing and Restoration of Dynamic and Static Measurements Based on Deep Learning Algorithms, Int. J. Concr. Struct. Mater., 12, pp.1~13. https://doi.org/10.1186/s40069-018-0237-8
- Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q. (2017) Densely Connected Convolutional Networks, IEEE Conference on Computer Vision and Pattern Recognition, pp.4700~4708.
- Kim, B.S., Lee, J.H., Kang, J.W., Kim, E.S., Kim, H.J. (2021) HOTR: End-to-End Human-Object Interaction Detection with Transformers, IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.74~83.
- Kim, J.M., Hyeon, S.G., Chae, J.H., Do, M.S. (2019) Road Crack Detection based on Object Detection Algorithm using Unmanned Aerial Vehicle Image, J. Korea Inst. Intell. Trans. Syst., 18, pp.155~163. https://doi.org/10.12815/kits.2019.18.6.155
- King, T.M., Arbon, J., Santiago, D., Adamo, D., Chin, W., Chin, W., Shanmugam, R. (2019) AI for Testing Today and Tomorrow: Industry Perspectives, IEEE International Conference On Artificial Intelligence Testing (AITest), pp.81~88.
- Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012) Imagenet Classification with Deep Convolutional Neural Networks, Adv. Neural Inf. Proc. Syst., 25, pp.1097~1105.
- Lee, B.Y., Yi, S.T., Kim, J.K. (2007) Surface Crack Evaluation Method in Concrete Structures, J. Korean Soc. Nondestruct. Test., 27, pp.173~182.
- Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P.,Zitnick, C. L. (2014) Microsoft COCO: Common Objects in Context, European Conference on Computer Vision, Springer, pp.740~755.
- Lowe, D.G. (1999) Object Recognition from Local Scale-Invariant Features, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.1150~1157.
- Na, S.G., Heo, S.J., Han, S.H. (2021) Construction Waste Reduction through Application of Different Structural Systems for the Slab in a Commercial Building: A South Korean Case, Appl. Sci., 11(3), p.5870. https://doi.org/10.3390/app11135870
- NIA (National Information Society Agency) (2020) 'NIA2020-032', https://www.nia.or.kr.
- Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection, IEEE Conference on Computer Vision and Pattern Recognition, pp.779~788.
- Ren, S., He, K., Girshick , R., Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Adv. Neural Inf. Proc. Syst., 28, pp.91~99.
- Revaud, J., Heo, M., Rezende, R.S., You, C., Jeong, S.G. (2019) Did It Change? Learning to Detect Point-of-Interest Changes for Proactive Map Updates, IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.4086~4095.
- Roh, B.S., Shin, W.H., Kim, I.D., Kim, S.W. (2021) Spatially Consistent Representation Learning, EEE/CVF Conference on Computer Vision and Pattern Recognition, pp.1144~1153.
- Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T. (2008) LabelMe: A Database and Web-Based Tool for Image Annotation, Int. J. Comput. Vis., 77(1-3), pp.157~173. https://doi.org/10.1007/s11263-007-0090-8
- Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition, Computer Vision and Pattern Recognition, arXiv:1409.1556.
- Tan, M., Le, Q. (2019) Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks, International Conference on Machine Learning, pp.6105~6114. PMLR.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017) Attention is All You Need, 31st Conference on Neural Information Processing Systems(NIPS 2017), pp.5998~6008.