DOI QR코드

DOI QR Code

Immunostimulatory activity and structural characteristics of neutral polysaccharides isolated from ginseng leaves fermented by Cordyceps sinensis

동충하초균으로 발효한 인삼잎에서 분리한 중성다당의 면역활성 및 구조적 특성

  • Cha, Ha Young (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Park, Hye-Ryung (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
  • 차하영 (경기대학교 식품생물공학과) ;
  • 박혜령 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2021.07.28
  • Accepted : 2021.09.07
  • Published : 2021.10.31

Abstract

This study elucidated the biological activities and structural characteristics of polysaccharides isolated from ginseng leaves fermented using Cordyceps sinensis (GLF). GLF comprised at least 18 glycosyl linkages, including 4-linked glucose residues (24.0%). To characterize the neutral polysaccharides in GLF, it was further fractionated by anion exchange chromatography, and the unabsorbed fraction (GLF1) was isolated. Peritoneal macrophages stimulated with GLF1 produced various cytokines in a dose-dependent manner. The properties and activities of the four subfractions (PHI, PHIA1-PHIA3) obtained after sequential enzymatic digestion were examined. PHI and PHIA3 primarily comprised glucose, whereas PHI exhibited an iodine-color reaction. Furthermore, the PHIA1-3 fractions indicated that cytokine production was completely inhibited. These results suggest at the immune activities of GLF1 may be due to the α-(1→4)-glucan branched at the C(O)6 position, which was produced by C. sinensis.

동충하초균으로 발효한 인삼잎의 면역활성과 구조를 규명하기 위하여 조다당(GLF)를 분리하고 구성당과 당쇄 결합양식을 확인한 결과 C. sinensis 유래의 glucan이 주를 이루며 소량의 인삼잎 유래 pectic substances가 혼재되어 있을 것이라 추정하였다. 이온 교환 수지를 이용해 GLF로부터 중성다당체(GLF1)를 분리하였으며, 이를 lyticase, β-glucosidase 및 α-glucoamylase 효소를 처리한 결과, GLF1은 α-glucoamylase에 의해 가수분해되는 것을 확인함으로써 주로 α-glucan을 함유하고 있음을 추정할 수 있었다. 대식세포 분비능을 측정한 결과, 동충하초균으로 인삼잎을 발효하여 얻은 조다당 GLF가 단순 열수추출 조다당인 GLW보다 더 우수한 활성(Data not shown)과 수율을 보여주었으며, GLF와 GLF1 모두 농도 의존적으로 면역활성이 증가하는 경향과 동일 농도에서 유사한 높은 활성을 나타냈다. 한편 GLF1의 전체구조의 특성을 확인하기 위하여 isoamylase 및 α-amylase 효소를 처리한 결과, isoamylase 처리 획분인 PHI가 72.8%의 glucose로 구성되며 iodine-starch 반응이 증가하는 결과를 보였다. 반면, PHI의 αamylase 처리 후 분리한 PHIA1, PHIA2 및 PHIA3 획분에서는 iodine-starch 반응이 나타나지 않았으며, 이들의 대식세포 분비능을 확인한 결과 세 가지 획분 모두 어떠한 활성도 나타내지 않음을 확인하였다. 이상의 결과를 종합하면 동충하초 발효 인삼잎유래 중성다당은 α-(1→4)-glucan을 주쇄로 존재하며 C(O)-6 위치에서 측쇄가 연결되어 존재하는 α-glucan의 구조를 이루고 있으며, 이들의 면역활성은 α-glucan 전체 구조에서 기인하는 것임을 최종 확인하였다.

Keywords

Acknowledgement

본 연구는 2021학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었습니다. 이 성과는 정부(과학 기술 정보 통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다 (No. NRF-2019R1C1C1006496)

References

  1. Ahn HY, Park KR, Kim YR, Cha JY, Cho YS. Chemical Characteristics in Fermented Cordycepin-enriched Cordyceps militaris. J. Life Sci. 23: 1032-1040 (2013) https://doi.org/10.5352/JLS.2013.23.8.1032
  2. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  3. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acid. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1006/abio.1976.9999
  5. Diaz LD, Fernandez-Ruiz V, Camara M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Food. 68: 103896 (2020) https://doi.org/10.1016/j.jff.2020.103896
  6. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature 168: 167 (1951)
  7. Giavasis I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 26: 162-173 (2014) https://doi.org/10.1016/j.copbio.2014.01.010
  8. Hakomori SI. A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsuphinyl carbanion in dimethyl sulfoxide. J. Biochem. 55: 205-208 (1964)
  9. Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamuraa J. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Anal. Biochem. 180: 351-357 (1989) https://doi.org/10.1016/0003-2697(89)90444-2
  10. Hwang KA. Functional Food for Immune Regulation Focusing on Korean Native Materials. Food Sci. Nutr. 25: 11-18 (2020)
  11. Janeway CA. Progress in immunology: Syndromes of diminished resistance to infection. J. Pediatr. 72: 885-903 (1968) https://doi.org/10.1016/s0022-3476(68)80446-9
  12. Jung J, Jang HJ, Eom SJ, Choi NS, Lee NK, Paik HD. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects. J. Ginseng Res. 43: 20-26 (2019) https://doi.org/10.1016/j.jgr.2017.07.004
  13. Kwak YS. Immunomodulatory Activity of Korean Ginseng (Panax ginseng C.A. Meyer). Food Science and Industry 45: 23-38 (2012)
  14. Lee SJ, In G, Han ST, Lee MH, Lee JW, Shin KS. Structural characteristics of a red ginseng acidic polysaccharide rhamnogalacturonan I with immunostimulating activity from red ginseng. J. Ginseng Res. 44: 570-579 (2020) https://doi.org/10.1016/j.jgr.2019.05.002
  15. Lee SM, Kim YG, Park HC, Kim KK, Son HJ, Hong CO, Park NS. Properties of the Silkworm (Bombyx mori) Dongchunghacho, a Newly Developed Korean Medicinal Insect-borne Mushroom: Mass-production and Pharmacological Actions. J. Life Sci. 27: 247-266 (2017) https://doi.org/10.5352/JLS.2017.27.2.247
  16. Luchsinger WW, Cornesky RA. Reducing power by the dinitrosalicylic acid method. Anal. Biochem. 4: 346-347 (1962) https://doi.org/10.1016/0003-2697(62)90098-2
  17. Martensson O, Maite DC, Ana I, Olle H. Effects of fermented, ropy, non-dairy, oat-based products on serum lipids and the faecal excretion of cholesterol and short chain fatty acids in germfree and conventional rats. Nutr. Res. 22: 1461-1473 (2002) https://doi.org/10.1016/S0271-5317(02)00474-8
  18. McGrance SJ, Cornell HJ, Rix CJ. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. Starch-Starke 50: 158-163 (1998) https://doi.org/10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7
  19. Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57: 1509-1519 (2005) https://doi.org/10.1211/jpp.57.12.0001
  20. Nie S, Cui SW, Xie M, Phillips AO, Phillips GO. Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioact. Carbohydr. Diet. Fibre. 1: 38-52 (2013) https://doi.org/10.1016/j.bcdf.2012.12.002
  21. Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 102: 664-668 (2007) https://doi.org/10.1016/j.foodchem.2006.05.053
  22. Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol. 24: 469-482 (2002) https://doi.org/10.1081/IPH-120014730
  23. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158 (1965)
  24. Sung JM, Kim CH, Yang KJ, Lee HK, Kim YS. Studies on Distribution and Utilization of Cordyceps militaris and C. nutans. Korean J. Med. Mycol. 21: 94-105 (1993)
  25. Sweet DP, Shapiro RH, Albersheim P. Quantitative analysis by various GLC response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 40: 217-225 (1975) https://doi.org/10.1016/S0008-6215(00)82604-X
  26. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. Asian and Siberian ginseng as a poteneial modulator of immune function: An in vitro cytokine study using mouse macrophages. Clin. Chim. Acta. 327: 123-128 (2003) https://doi.org/10.1016/S0009-8981(02)00343-1
  27. Wang J, Nie S, Cui SW, Wang Z, Phillips AO, Phillips GO, Li Y, Xie M. Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocoll. 67: 139-147 (2017) https://doi.org/10.1016/j.foodhyd.2017.01.010
  28. Wang Z, Li M, Li K, Son BG, Kang JS, Park YH, Lee YJ, Kim ST, Jung JC, Lee YG, Choi YW. Changes in Cordycepin and Liquiritigenin Content and Inhibitory Effect on NO Production in Fermented Licorice and Dongchunghacho. J. Life Sci. 27: 57-66 (2017) https://doi.org/10.5352/JLS.2017.27.1.57
  29. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60: 258-274 (2002) https://doi.org/10.1007/s00253-002-1076-7
  30. Winkler D. Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet's rural economy. Econ. Bot. 62: 291-305 (2008) https://doi.org/10.1007/s12231-008-9038-3
  31. Yalin W, Cuirong S, Yuanjiang P. Studies on isolation and structural features of a polysaccharide from the mycelium of an Chinese edible fungus (Cordyceps sinensis). Carbohydr. Polym. 63: 251-256 (2006) https://doi.org/10.1016/j.carbpol.2005.08.053
  32. Yamada H, Kiyohara H, Cyong J, Kojima Y, Kumazawa Y, Otsuka Y. Studies on polysaccharides from Angelica acutiloba. Planta Med. 50: 163-167 (1984) https://doi.org/10.1055/s-2007-969661
  33. Yan JK, Wang WQ, Wu JY. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Food. 6: 33-47 (2014) https://doi.org/10.1016/j.jff.2013.11.024
  34. Zhang Z, Lei Z, Yun L, Zhongzhi L, Chen Y. Chemical Composition and Bioactivity Changes in Stale Rice after Fermentation with Cordyceps sinensis. J. Biosci. Bioeng. 106: 188-193 (2008) https://doi.org/10.1263/jbb.106.188
  35. Zhang J, Wen C, Duan Y, Zhang H, Ma H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 132: 906-914 (2019) https://doi.org/10.1016/j.ijbiomac.2019.04.020