Acknowledgement
This work was supported by the National Science Fund for Distinguished Young Scholars, China (Grant No. 51725502), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004), the National Nature Science foundation of China (NSFC) under Contract No, 11802344, and Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50809).
References
- S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (11) (2009) 12-19. https://doi.org/10.1016/S1369-7021(09)70294-9
- W.Q. Chen, X.Z. Xiao, B. Pang, S.S. Si, Y.Z. Jia, B. Xu, T.W. Morgan, W. Liu, Y.L. Chiu, Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure, J. Nucl. Mater. 522 (2019) 11-18. https://doi.org/10.1016/j.jnucmat.2019.05.004
- S.I. Kim, B.H. Kim, J.L. Kim, J.I. Lee, A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method, Nuclear Engineering and Technology 47 (7) (2015) 939-944. https://doi.org/10.1016/j.net.2015.07.005
- G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett, Emulation of reactor irradiation damage using ion beams, Scripta Mater. 88 (2014) 33-36. https://doi.org/10.1016/j.scriptamat.2014.06.003
- C. Heintze, F. Bergner, S. Akhmadaliev, E. Altstadt, Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening, J. Nucl. Mater. 472 (2016) 196-205. https://doi.org/10.1016/j.jnucmat.2015.07.023
- R. Kasada, S. Konishi, K. Yabuuchi, S. Nogami, M. Ando, D. Hamaguchi, H. Tanigawa, Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation, Fusion Eng. Des. 89 (7) (2014) 1637-1641. https://doi.org/10.1016/j.fusengdes.2014.03.068
- Z. Fan, S. Zhao, K. Jin, D. Chen, Y.N. Osetskiy, Y. Wang, H. Bei, K.L. More, Y. Zhang, Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys, Acta Mater. 164 (2019) 283-292. https://doi.org/10.1016/j.actamat.2018.10.040
- C.D. Hardie, S.G. Roberts, A.J. Bushby, Understanding the effects of ion irradiation using nanoindentation techniques, J. Nucl. Mater. 462 (2015) 391-401. https://doi.org/10.1016/j.jnucmat.2014.11.066
- P. Sun, Y. Wang, M. Frost, C. Schonwalder, A.L. Levitan, M. Mo, Z. Chen, J.B. Hastings, G.R. Tynan, S.H. Glenzer, P. Heimann, Characterization of defect clusters in ion-irradiated tungsten by X-Ray diffuse scattering, J. Nucl. Mater. 510 (2018) 322-330. https://doi.org/10.1016/j.jnucmat.2018.07.062
- A. Prasitthipayong, S.J. Vachhani, S.J. Tumey, A.M. Minor, P. Hosemann, Indentation size effect in unirradiated and ion-irradiated 800H steel at high temperatures, Acta Mater. 144 (2018) 896-904. https://doi.org/10.1016/j.actamat.2017.11.001
- C. Xu, L. Zhang, W. Qian, J. Mei, X. Liu, The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation, Nuclear Engineering and Technology 48 (3) (2016) 758-764. https://doi.org/10.1016/j.net.2016.01.007
- C. Heintze, F. Bergner, M. Hernandez-Mayoral, Ion-irradiation-induced damage in Fe-Cr alloys characterized by nanoindentation, J. Nucl. Mater. 417 (1) (2011) 980-983. https://doi.org/10.1016/j.jnucmat.2010.12.196
- X. Xiao, L. Chen, L. Yu, H. Duan, Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory, Int. J. Plast. 116 (2019) 216-231. https://doi.org/10.1016/j.ijplas.2019.01.005
- C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, Effects of ion irradiation on microstructure and properties of zirconium alloys-a review, Nuclear Engineering and Technology 47 (3) (2015) 323-331. https://doi.org/10.1016/j.net.2014.12.015
- D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda, Z. Li, L. Liu, N. Sekimura, Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 365 (2015) 503-508. https://doi.org/10.1016/j.nimb.2015.08.029
- Z.Y. Fu, P.P. Liu, F.R. Wan, Q. Zhan, Helium and hydrogen irradiation induced hardening in CLAM steel, Fusion Eng. Des. 91 (2015) 73-78. https://doi.org/10.1016/j.fusengdes.2015.01.001
- Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, G. Feng, A model of size effects in nano-indentation, J. Mech. Phys. Solid. 54 (8) (2006) 1668-1686. https://doi.org/10.1016/j.jmps.2006.02.002
- W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid. 46 (3) (1998) 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
- E. Orowan, A type of plastic deformation new in metals, Nature 149 (3788) (1942) 643-644. https://doi.org/10.1038/149643a0
- X. Xiao, Q. Chen, H. Yang, H. Duan, J. Qu, A mechanistic model for depthdependent hardness of ion irradiated metals, J. Nucl. Mater. 485 (2017) 80-89. https://doi.org/10.1016/j.jnucmat.2016.12.039
- X. Xiao, L. Yu, A hardening model for the cross-sectional nanoindentation of ion-irradiated materials, J. Nucl. Mater. 511 (2018) 220-230. https://doi.org/10.1016/j.jnucmat.2018.09.019
- X. Xiao, L. Yu, Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials, J. Nucl. Mater. 503 (2018) 110-115. https://doi.org/10.1016/j.jnucmat.2018.02.047
- J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (2) (1953) 153-162. https://doi.org/10.1016/0001-6160(53)90054-6
- G.J. Weng, A micromechanical theory of grain-size dependence in metal plasticity, J. Mech. Phys. Solid. 31 (3) (1983) 193-203. https://doi.org/10.1016/0022-5096(83)90021-2
- E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B 64 (9) (1951) 747-753. https://doi.org/10.1088/0370-1301/64/9/303
- A. Singh, Y. Osawa, H. Somekawa, T. Mukai, Effect of microstructure on strength and ductility of high strength quasicrystal phase dispersed Mg-Zn-Y alloys, Mater. Sci. Eng., A 611 (2014) 242-251. https://doi.org/10.1016/j.msea.2014.05.091
- Y. Wang, H. Choo, Influence of texture on Hall-Petch relationships in an Mg alloy, Acta Mater. 81 (2014) 83-97. https://doi.org/10.1016/j.actamat.2014.08.023
- H. Yu, Y. Xin, M. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: a review, J. Mater. Sci. Technol. 34 (2) (2018) 248-256. https://doi.org/10.1016/j.jmst.2017.07.022
- B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Quantitative prediction of texture effect on Hall-Petch slope for magnesium alloys, Acta Mater. 173 (2019) 142-152. https://doi.org/10.1016/j.actamat.2019.05.016
- X. Hou, N.M. Jennett, Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects, Acta Mater. 60 (10) (2012) 4128-4135. https://doi.org/10.1016/j.actamat.2012.03.054
- Y. Ha, A. Kimura, Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 365 (2015) 313-318. https://doi.org/10.1016/j.nimb.2015.07.076
- G.M. Cheng, W.Z. Xu, Y.Q. Wang, A. Misra, Y.T. Zhu, Grain size effect on radiation tolerance of nanocrystalline Mo, Scripta Mater. 123 (2016) 90-94. https://doi.org/10.1016/j.scriptamat.2016.06.007
- E. Hug, R. Prasath Babu, I. Monnet, A. Etienne, F. Moisy, V. Pralong, N. Enikeev, M. Abramova, X. Sauvage, B. Radiguet, Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels, Appl. Surf. Sci. 392 (2017) 1026-1035. https://doi.org/10.1016/j.apsusc.2016.09.110
- C. Heintze, I. Hilger, F. Bergner, T. Weissgarber, B. Kieback, Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: effect of the initial microstructure on irradiation-induced hardening, J. Nucl. Mater. 518 (2019) 1-10. https://doi.org/10.1016/j.jnucmat.2019.02.037
- G. Monnet, C. Mai, Prediction of irradiation hardening in austenitic stainless steels: analytical and crystal plasticity studies, J. Nucl. Mater. 518 (2019) 316-325. https://doi.org/10.1016/j.jnucmat.2019.03.001
- G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical, Proc. Roy. Soc. Lond. 145 (855) (1934) 362-387.
- G.I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938) 307-324.
- M. Ashby, The deformation of plastically non-homogeneous materials, Phil. Mag.: A Journal of Theoretical Experimental and Applied Physics 21 (170) (1970) 399-424. https://doi.org/10.1080/14786437008238426
- T. Miura, K. Fujii, K. Fukuya, K. Takashima, Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels, J. Nucl. Mater. 417 (1-3) (2011) 984-987. https://doi.org/10.1016/j.jnucmat.2010.12.197
- H. Huang, J. Li, D. Li, R. Liu, G. Lei, Q. Huang, L. Yan, TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels, J. Nucl. Mater. 454 (1-3) (2014) 168-172. https://doi.org/10.1016/j.jnucmat.2014.07.033
- A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, 1977.
- D. Tabor, A simple theory of static and dynamic hardness, Proc. Roy. Soc. Lond. Math. Phys. Sci. 192 (1029) (1948) 247-274.
- D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (2) (1994) 65-85. https://doi.org/10.1007/BF00175354
- X. Xiao, D. Terentyev, L. Yu, A. Bakaev, Z. Jin, H. Duan, Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory, J. Nucl. Mater. 477 (2016) 123-133. https://doi.org/10.1016/j.jnucmat.2016.05.012
- M. Dade, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Mater. 127 (2017) 165-177. https://doi.org/10.1016/j.actamat.2017.01.026
- P. Song, J. Gao, K. Yabuuchi, A. Kimura, Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel, J. Nucl. Mater. 511 (2018) 200-211. https://doi.org/10.1016/j.jnucmat.2018.09.007
Cited by
- Microstructure-informed prediction and measurement of nanoindentation hardness of an Fe-9Cr alloy irradiated with Fe-ions of 1 and 5 MeV energy vol.30, 2021, https://doi.org/10.1016/j.nme.2021.101105