Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2017M2A8A4015156).
References
- P.E. MacDonald, V.N. Shah, L.W. Ward, P.G. Elliso, Steam Generator Tube Failures, U. S. NRC, NUREG/CR-6365, INEL-95/0383, 1996.
- K.J. Karwoski, G.L. Maker, M.G. Yoder, U.S. Operating Experience with Thermally Treated Alloy 690 Steam Generator Tubes, U. S. NRC, 2007. NUREG-1841.
- S. Sancaktar, M. Salay, R. Lyengar, A. Azarm, S. Majumdar, Consequential SGTR Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600 and 690 Steam Generator Tubes, U. S. NRC, 2018. NUREG-2195.
- SGTR Severe Accident Working Group, Risk Assessment of Severe Accident-Induced Steam Generator Tube Rupture, U. S. NRC, 1988. NUREG-1570.
- Y. Liao, K. Vierow, MELCOR analysis of steam generator tube creep rupture in station black out severe accident, Nucl. Technol. 152 (2005) 302-313. https://doi.org/10.13182/NT05-5
- F.R. Larson, J. Miller, A time-dependence relationship for rupture and creep stresses, Trans. ASME 74 (1952) 765-771.
- Y. Liao, S. Guentay, Potential steam generator tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear, Nucl. Eng. Des. 239 (2009) 1128-1135. https://doi.org/10.1016/j.nucengdes.2009.02.003
- F.H. Norton, The Creep of Steels at High Temperatures, McGraw-Hill, New York, 1929.
- A.K. Mukherjee, J.E. Bird, J.E. Dorn, Experimental correlations for high-temperature creep, ASM Trans. Quart. 62 (1969) 155-179.
- O.D. Sherby, P.M. Burke, Mechanical behavior of crystalline solids at elevated temperature, Prog. Mater. Sci. 13 (1968) 325-390.
- M.E. Kassner, Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam, 2009.
- B. Derby, M.F. Ashby, Power-laws and A-n correlation in creep, Scripta Metall. 18 (1984) 1079-1084. https://doi.org/10.1016/0036-9748(84)90182-0
- A.M. Brown, M.F. Ashby, On the power-law creep equation, Scripta Metall. 14 (1980) 1297-1302. https://doi.org/10.1016/0036-9748(80)90182-9
- R.W. Evans, B. Wilshire, Creep of Metals and Alloys, Institute of Metals, London, 1985.
- F. C Monkman, N.J. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, Proc. Am. Soc. Test. Mater. 56 (1956) 593-620.
- W.G. Kim, J.M. Kim, M.C. Kim, Creep deformation and rupture behavior of alloy 690 tube, Trans. KPVP 16 (2020) 49-55. https://doi.org/10.20466/KPVP.2020.16.1.049.
- H. Hanninen, M. Ivanchenko, Y. Yagodzinskyy, V. Nevdacha, U. Ehrnsten, P. Aaltonen, Dynamic strain aging of Ni-base alloys INCONEL 600 and 690, in: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System - Water Reactors, Salt Lake City, USA, August 14-18, 2005.
- Special Metals Corporation, INCONEL Alloy 690 Specification, SMC-079, 2009, https://www.specialmetals.com/tech-center/alloys.html.
- B.S. Lee, S.W. Nam, J.H. Hong, A phenomenological model for transient creep behaviors based on the steady state creep properties, Scripta Mater. 35 (1996) 379-384. https://doi.org/10.1016/1359-6462(96)00139-X
- B.S. Lee, H. Stamm, S.W. Nam, A phenomenological model of creep transient at power law region, in: Oikawa, et al. (Eds.), Strength of Materials, The Japan Institute of Metals, 1994, pp. 595-598.
- J.M. Kim, M.C. Kim, Derivation of transverse tensile properties of Alloy 690 steam generator tubes under ring-tensile specimen and finite element analysis (PVP2018-84828), in: Proceedings of ASME 2018 Pressure Vessels & Piping Division Conference (PVP 2018), Prague, Czech Republic, July 15-20, 2018.