DOI QR코드

DOI QR Code

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon (Department of Nuclear Engineering, Seoul National University) ;
  • Chae, Hoon (Department of Nuclear Engineering, Seoul National University) ;
  • Kim, Eung Soo (Department of Nuclear Engineering, Seoul National University)
  • 투고 : 2020.10.06
  • 심사 : 2021.04.20
  • 발행 : 2021.10.25

초록

In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

키워드

과제정보

This research was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 1903003). The Institute of Engineering Research at Seoul National University provided research facilities for this work.

참고문헌

  1. S.J. Board, R.W. Hall, Recent advances in understanding large scale vapour explosions (No. NEA-CSNI-R-1976-8), 1976.
  2. A.R. Antariksawan, K. Moriyama, H.S. Park, Y. Maruyama, Y. Yang, J. Sugimoto, The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments (No. JAERI-REVIEW-98-012), Japan Atomic Energy Research Inst (1998).
  3. P.S. Mahapatra, et al., Molten Drop to Coolant Heat Transfer During Premixing of Fuel Coolant Interaction. Droplet and Spray Transport: Paradigms and Applications, Springer, Singapore, 2018, pp. 201-235.
  4. M. Saito, Experimental study on penetration behaviors of water jet into freon-11 and liquid nitrogen, in: ANS-proc. 25th Natl. Heat Transfer Conf., 1988, pp. 173-183.
  5. H.S. Park, et al., Penetration of isothermal plunging jet into denser liquid, Proc. of 4th KSME-JSME Fluids Engineering Conf. (1998) 581-584.
  6. T.N. Dinh, V.A. Bui, J.A. Nourgaliev, J.A. Green, B.R Segal, Experimental andanalytical studies of melt jet-coolant interactions: a synthesis, Nucl. Eng. Des. 189 (1-3) (1999) 299-327. https://doi.org/10.1016/S0029-5493(98)00275-1
  7. K.H. Bang, J.M. Kim, D.H. Kim, Experimental study of melt jet breakup in water, J. Nucl. Sci. Technol. 40 (10) (2003) 807-813. https://doi.org/10.3327/jnst.40.807
  8. K.H. Bang, H.T. Kim, V.D. Tan, Experiment and modeling of jet breakup in fuel-coolant interactions, Ann. Nucl. Energy 118 (2018) 336-344. https://doi.org/10.1016/j.anucene.2018.04.033
  9. Y. Abe, T. Kizu, T. Arai, H. Nariai, K. Chitose, K. Koyama, Study on thermal-hydraulic behavior during molten material and coolant interaction, Nucl. Eng. Des. 230 (1-3) (2004) 277-291. https://doi.org/10.1016/j.nucengdes.2003.11.032
  10. E. Matsuo, Y. Abe, H. Nariai, K. Chitose, K. Koyama, K. Itoh, Study on jet breakup behavior at core disruptive accident for fast breeder reactor, International Conference on Nuclear Engineering 42452 (2006, January) 555-563.
  11. K. Moriyama, Y. Maruyama, T. Usami, H. Nakamura, Coarse break-up of a stream of oxide and steel melt in a water pool, 2005. JAERI-Research 2005-017.
  12. L. Manickam, S. Bechta, W. Ma, On the fragmentation characteristics of melt jets quenched in water, Int. J. Multiphas. Flow 91 (2017) 262-275. https://doi.org/10.1016/j.ijmultiphaseflow.2017.02.005
  13. H. Ikeda, S. Koshizuka, Y. Oka, H.S. Park, J. Sugimoto, Numerical analysis of jet injection behavior for fuel-coolant interaction using particle method, J. Nucl. Sci. Technol. 38 (3) (2001) 174-182. https://doi.org/10.3327/jnst.38.174
  14. S. Park, H.S. Park, B.I. Jang, H.J. Kim, 3-D simulation of plunging jet penetration into a denser liquid pool by the RD-MPS method, Nucl. Eng. Des. 299 (2016) 154-162. https://doi.org/10.1016/j.nucengdes.2015.08.003
  15. S.C. Escobar, R. Meignen, S. Picchi, N. Rimbert, M. Gradeck, A two-scale Approach for modeling the corium melt fragmentation during fuel-coolant interaction, in: NURETH-16: International Topical Meeting on Nucelar Reactor Thermal Hydraulics, Omnipress, 2015, August.
  16. Y. Zhou, J. Chen, M. Zhong, J. Wang, M. Lv, Numerical simulation of metal jet breakup, cooling and solidification in water, Int. J. Heat Mass Tran. 109 (2017) 1100-1109. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.083
  17. S. Thakre, L. Manickam, W. Ma, A numerical simulation of jet breakup in melt coolant interactions, Ann. Nucl. Energy 80 (2015) 467-475. https://doi.org/10.1016/j.anucene.2015.02.038
  18. R. Saito, Y. Abe, H. Yoshida, Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum, J. Nucl. Sci. Technol. 51 (1) (2014) 64-76. https://doi.org/10.1080/00223131.2014.849211
  19. R. Saito, Y. Abe, H. Yoshida, Breakup and fragmentation behavior of molten material jet in multi-channel of BWR lower plenum, J. Nucl. Sci. Technol. 53 (2) (2016) 147-160. https://doi.org/10.1080/00223131.2015.1027756
  20. G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: a Meshfree Particle Method, World scientific, 2003.
  21. L. Brookshaw, A method of calculating radiative heat diffusion in particle simulations, Proc. Astron. Soc. Aust. 6 (1985) 207-210. https://doi.org/10.1017/S1323358000018117
  22. H.F. Schwaiger, An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions, Int. J. Numer. Methods Eng. 75 (6) (2008) 647-671. https://doi.org/10.1002/nme.2266
  23. L. Brookshaw, Solving the heat diffusion equation in SPH, Memor. Soc. Astronom. Ital. 65 (1994) 1033.
  24. J.J. Monaghan, Simulating free surface flows with SPH, J. Comput. Phys. 110 (2) (1994) 399-406. https://doi.org/10.1006/jcph.1994.1034
  25. Y.B. Jo, S.H. Park, H.Y. Choi, H.W. Jung, Y.J. Kim, E.S. Kim, SOPHIA: development of Lagrangian-based CFD code for nuclear thermal-hydraulics and safety applications, Ann. Nucl. Energy 124 (2019) 132-149. https://doi.org/10.1016/j.anucene.2018.09.005
  26. M. Burger, S.H. Cho, E.V. Berg, A. Schatz, Breakup of melt jets as pre-condition for premixing: modeling and experimental verification, Nucl. Eng. Des. 155 (1-2) (1995) 215-251. https://doi.org/10.1016/0029-5493(94)00875-Y
  27. J.R. Richards, A.N. Beris, A.M. Lenhoff, Drop formation in liquideliquid systems before and after jetting, Phys. Fluids 7 (11) (1995) 2617-2630. https://doi.org/10.1063/1.868710
  28. S. Adami, X.Y. Hu, N.A. Adams, A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, J. Comput. Phys. 229 (13) (2010) 5011-5021. https://doi.org/10.1016/j.jcp.2010.03.022
  29. N. Grenier, M. Antuono, A. Colagrossi, D. Le Touze, B. Alessandrini, An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J. Comput. Phys. 228 (22) (2009) 8380-8393. https://doi.org/10.1016/j.jcp.2009.08.009
  30. A. Zhang, P. Sun, F. Ming, An SPH modeling of bubble rising and coalescing in three dimensions, Comput. Methods Appl. Mech. Eng. 294 (2015) 189-209. https://doi.org/10.1016/j.cma.2015.05.014
  31. J.D. Anderson, J. Wendt, Computational Fluid Dynamics, vol. 206, McGraw-Hill, New York, 1995, p. 332.
  32. Y. Abe, E. Matsuo, T. Arai, H. Nariai, K. Chitose, K. Koyama, K. Itoh, Fragmentation behavior during molten material and coolant interactions, Nucl. Eng. Des. 236 (14-16) (2006) 1668-1681. https://doi.org/10.1016/j.nucengdes.2006.04.008
  33. M. Epstein, H.K. Fauske, Applications of the turbulent entrainment assumption to immiscible gas-liquid and liquid-liquid systems, Chem. Eng. Res. Des. 79 (4) (2001) 453-462. https://doi.org/10.1205/026387601750282382
  34. V.P. Carey, Liquid-vapor phase-change phenomena, 1992. United States.
  35. D. Magallon, I. Huhtiniemi, H. Hohmann, Lessons learnt from FARO/TERMOS corium melt quenching experiments, Nucl. Eng. Des. 189 (1-3) (1999) 223-238. https://doi.org/10.1016/S0029-5493(98)00274-X
  36. T. Suzuki, H. Yoshida, F. Nagase, Development of numerical evaluation method for fluid dynamics effects on jet breakup phenomena in BWR lower plenum, J. Nucl. Sci. Technol. 51 (7-8) (2014) 968-976. https://doi.org/10.1080/00223131.2014.924447