• Title/Summary/Keyword: Bubble behavior

Search Result 201, Processing Time 0.036 seconds

A Study on the Behavior of Bubbles in Fluidized Bed (유동층내의 기포거동에 대한 연구)

  • 김용섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.24-28
    • /
    • 1994
  • In the present paper, the behavior of bubbles in a fluidized bed has been investigated experimentally. The bubble size, distribution of bubble, bubble rising velocity and pressure fluctuation in the fluidized bed are obtained at different air velocity. The results are discussed and compared study the effect of air velocity on the behavior of a bubbles in fluidized bed.

  • PDF

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

A NUMERICAL STUDY ON THE CAVITATION BUBBLE-SHOCK INTERACTION (캐비테이션 기포와 충격파의 간섭에 관한 연구)

  • Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.185-187
    • /
    • 2009
  • A density based method with homogeneous cavitation model to investigate cavitation-bubble collapsing behavior is proposed and applied to bubble-shock interaction problems. By applying this method, cylindrical bubbles located in the liquid and incident liquid shock wave are computed. Bubble collapsing behavior, shock-bubble interaction and shock transmission/reflection pattern are investigated.

  • PDF

Estimation of Bubble Behavior and PD Initiation Voltage in the Simulated Electrode System of High Temperature Superconducting Coil (고온초전도코일 모의전극계에서 기포거동 및 부분방전개시전압의 추정)

  • 석복렬;최명준;김용한;김진수;김종구
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2001
  • This paper deals with the numerical estimation of the bubble behavior and the partial discharge (PD) initiation voltage on the basis of electric field calculation with the coaxial coil layer-to-cylindrical electrode system for the simulation of high temperature superconducting coils. The theoretical results of bubble behavior and the PD initiation voltages show fairly good agreement with the experimental results.

  • PDF

Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU

  • Basit, Muhammad Abdul;Tian, Wenxi;Chen, Ronghua;Basit, Romana;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1810-1820
    • /
    • 2021
  • Study of single bubble behavior under rolling motions can prove useful for fundamental understanding of flow field inside the modern small modular nuclear reactors. The objective of the present study is to simulate the influence of rolling conditions on single rising bubble in a liquid using multiphase Moving Particle Semi-implicit (MPS) method. Rolling force term was added to 2D Navier-Stokes equations and a computer program was written using C language employing OpenACC to port the code to GPU. Computational results obtained were found to be in good agreement with the results available in literature. The impact of rolling parameters on trajectory and velocity of the rising bubble has been studied. It has been found that bubble rise velocity increases with rolling amplitude due to modification of flow field around the bubble. It has also been concluded that the oscillations of free surface, caused by rolling, influence the bubble trajectory. Furthermore, it has been discovered that smaller vessel width reduces the impact of rolling motions on the rising bubble. The effect of liquid viscosity on bubble rising under rolling was also investigated and it was found that effects of rolling became more pronounced with the increase of liquid viscosity.

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (II): Comparison of Bubble Behavior with and without Ejector (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (II): 기포거동 특성의 비교 분석)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Hyogeum;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • To verify floatability of ABB (Air bubble barrier), we compared bubble swarm behavior with and without the air-driven ejector. Experiment was conducted using the fabricated air-driven ejector with 5 mm nozzle on the bottom of 1 m3 water tank. Reynolds number of air in the nozzle was ranged 1766-13248. We analyzed data with statistical method using image processing, particle mage velocimetry (PIV) and proper orthogonal decomposition (POD) analysis. As a result of POD analysis, there was no significant eigenmode in bubbly flow generated from the ejector. It means that more complex turbulent flows were formed by the ejector, thereby (1) making bubbles finer, (2) promoting three-dimensional energy transfer between bubble and water, and (3) making evenly distributed velocity profile of water. It is concluded that the air-driven ejector could enhance the performance of ABB.

Bubble Behavior and Radiation for Laser-Induced Collapsing Bubble in Water (물 속에서 레이저에 의하여 생성된 기포의 거동 및 복사현상)

  • Karng, Sarng-Woo;Byun, Ki-Taek;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1282-1287
    • /
    • 2004
  • The bubble behavior and the radiation mechanism from a laser-induced collapsing bubble were investigated theoretically using the Keller-Miksis equation for the bubble wall motion and analytical solutions for the vapor inside bubble. The calculated time dependent bubble radius is in good agreement with observed ones. The half-width of the luminescence pulse at the collapse point, which was calculated under assumption that the light emission mechanism is black body radiation from the vapor bubble agreed well with observed value of several nanoseconds. The gas content inside the vapor bubble was too small to produce the light emission due to bremsstrahlung.

  • PDF

Study on Bubble Behavior with the Simulated Electrode System of High Temperature Superconducting Coils for Electric Power System (전력용 고온초전도 코일 모의전극계에서의 기포거동에 관한 연구)

  • 석복렬;김종구
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Bubble behavior is studied with an electrode system which consists of coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers and is immersed in liquid nitrogen for simulation of insulation environments in high temperature superconducting(HTS) coils The results show that the bubble behavior Is affected severely by electric field: (1) under low applied voltage bubbles rise by buoyancy, but at higher applied voltage they are trapped in a lower electric field region below the coil electrode, and (2) the trapped bubble flows along the downside of coil electrode if no obstruction is in a groove between coil turns. but it splashes out of the groove after its growing if the obstruction such as spacer-exists.

  • PDF

Prediction of Behavior for an Ultrasonically Driven Bubble in Sulfuric Acid Solutions by a Set of Solutions of Navier-Stokes Equations (나비아-스톡스 방정식의 해에 의한 황산용액 내에서 초음파에 의해 가진되는 기포의 거동 예측)

  • Kim, Ki-Young;Byun, Ki-Taek;Kwak, Ho-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.353-356
    • /
    • 2006
  • A set of solutions of the Navier-Stokes equation for the gas inside a spherical bubble with heat transfer through the bubble wall permits to predict correctly behavior of an ultrasonically driven bubble in aqueous solutions of sulfuric acid. Calculation results of the minimum velocity of bubble wall and the peak temperature and pressure are in excellent agreement with the observed ones. Further the calculated bubble radius-time curve displays alternating pattern of bubble motion as observed in experiment.

  • PDF

A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE (자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF