• Title/Summary/Keyword: Al-Si-Cu계 주조 합금

Search Result 5, Processing Time 0.017 seconds

Effect of Cu content on Hot Tearing Susceptibility in Al-Si-Cu Aluminum Casting Alloy (Al-Si-Cu 알루미늄 주조 합금의 열간 균열 민감성에 미치는 Cu 함량의 영향)

  • Oh, Seung-Hwan;Munkhdelger, Chinbat;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.419-433
    • /
    • 2021
  • Al-Si-Cu alloys benefit from the addition of copper for better hardness and strength through precipitation hardening, which results in remarkably strong alloys. However, the addition of copper expands the solidification range of Al-Si-Cu alloys, and due to this, these alloys become more prone to hot tearing, which is one of the most common and serious fracture phenomena encountered during solidification. The conventional evaluation method of the hot tearing properties of an alloy is a relative and qualitative analysis approach that does not provide quantitative data about this phenomenon. In the present study, the mold itself part of a device developed in Instone et al. was partially modified to obtain more reliable quantitative data pertaining to the hot tearing properties of an Al-Si-Cu casting alloy. To assess the influence of Cu element, four levels of Cu contents were tested (0.5, 1.0, 3.0, and 5.0 wt.%) in the Al-Si-Cu system alloy and the hot tearing properties were evaluated in each case. As the Cu content was increased, the hot tearing strength decreased to 2.26, 1.53, 1.18, and 1.04 MPa, respectively. At the moment hot tearing occurred, the corresponding solid fraction and solidification rate decreased at the same temperature due to the increase in the solid-liquid coexistence range as the Cu content increased. The morphology of the fracture surfaces was changed from dendrites to dendrites covered with residual liquid, and CuAl2 phases were observed in the vicinity of hot tearing.

Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap (재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향)

  • Sung, Dong-Hyun;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

Effect of Zn additions on the Mechanical Properties of High Strength Al-Si-Mg-Cu alloys (Zn 첨가량에 따른 Al-Si-Mg-Cu계 합금의 미세조직 및 기계적 특성변화)

  • Hwang, Soo-Been;Kim, Byung-Joo;Jung, Sung-Su;Kim, Dong-Gyu;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.39 no.3
    • /
    • pp.33-43
    • /
    • 2019
  • In this study, the effects of Zn additions on the mechanical properties of Al-Si-Mg-Cu alloys were investigated by increasing the amount of Zn up to 8wt.%. As the Zn content was increased up to 6 wt.%, the yield strength and elongation changed linearly without any significant changes in the size and shape of the main reinforcement phase. However, it was confirmed by SEM observation that the Mg-Zn phase formed between the reinforcement phases when the amount of Zn added exceeded 7wt.%. A Mg-Zn intermetallic compound formed between the $Mg_2Si$ phase, becoming a crack initiation point under stress. Thus, the formation of the Mg-Zn phase may cause a sharp decrease in the elongation when Zn at levels exceeding 7 wt.%. It was also found that the matrix became more brittle with increasing the Zn content. From these results, it can be concluded that the formation of the Mg-Zn intermetallic compound and the brittle characteristics of the matrix are the main causes of the remarkable changes in the mechanical properties of this alloy system

A Study on the Elimination of Fe Elements in Aluminum Alloy by Electromagnetic Force;Part 2. The Movement of Fe-Contained Intermetallics with Electromagnetic Force in Al-Si-Cu Scrap (전자기력을 이용한 알루미늄 스크랩 중의 Fe 제거에 관한 연구;Part 2. Al-Si-Cu계 합금 스크랩에서 전자기력에 따른 Fe계 금속간화합물의 이동양상)

  • Kim, Jeong-Ho;Noh, Jeong-Hoon;Park, Joon-Pyo;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.240-245
    • /
    • 1998
  • In the view point of the environmental conservation and the energy reduction, the recycling of metal scrap is coming as one of the global subjects in the world. In this study, the movement of intermetallics with electromagnetic force in a melt of a scrap of Al-Si-Cu alloy (JIS ADC12), which was widely used in diecasting process, was investigated in order to eliminate the Fe element, which was usually accumulated in a scrap. In this study, we applied electromagnetic method to eliminate Fe element in ADC12 aluminum alloy scrap which contains 1.64wt.% Fe and the effects of electromagnetic force on the particle movement was visualized and confirmed by water modeling and experiment. As a result, the Fe intermetallic compounds are moved to the direction opposite to that of the electromagnetic force as the force applies, thus eliminated from the bulk metal. Therefore, the content of Fe in matrix decreased from 1.64wt.% to 0.45wt.%.

  • PDF

Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys (Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향)

  • Moon, Min-Kook;Kim, Young-Chan;Kim, Yu-Mi;Choi, Se-Weon;Kang, Chang-Seog;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.