• Title/Summary/Keyword: Al-Si-Cu casting alloy and Effect of copper

Search Result 4, Processing Time 0.02 seconds

Effect of Cu content on Hot Tearing Susceptibility in Al-Si-Cu Aluminum Casting Alloy (Al-Si-Cu 알루미늄 주조 합금의 열간 균열 민감성에 미치는 Cu 함량의 영향)

  • Oh, Seung-Hwan;Munkhdelger, Chinbat;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.419-433
    • /
    • 2021
  • Al-Si-Cu alloys benefit from the addition of copper for better hardness and strength through precipitation hardening, which results in remarkably strong alloys. However, the addition of copper expands the solidification range of Al-Si-Cu alloys, and due to this, these alloys become more prone to hot tearing, which is one of the most common and serious fracture phenomena encountered during solidification. The conventional evaluation method of the hot tearing properties of an alloy is a relative and qualitative analysis approach that does not provide quantitative data about this phenomenon. In the present study, the mold itself part of a device developed in Instone et al. was partially modified to obtain more reliable quantitative data pertaining to the hot tearing properties of an Al-Si-Cu casting alloy. To assess the influence of Cu element, four levels of Cu contents were tested (0.5, 1.0, 3.0, and 5.0 wt.%) in the Al-Si-Cu system alloy and the hot tearing properties were evaluated in each case. As the Cu content was increased, the hot tearing strength decreased to 2.26, 1.53, 1.18, and 1.04 MPa, respectively. At the moment hot tearing occurred, the corresponding solid fraction and solidification rate decreased at the same temperature due to the increase in the solid-liquid coexistence range as the Cu content increased. The morphology of the fracture surfaces was changed from dendrites to dendrites covered with residual liquid, and CuAl2 phases were observed in the vicinity of hot tearing.

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

A Study on the Mechanical Properties of Al-8.6% Si-3.6% Cu Alloy Cast in Plaster Mold (석고주조(石膏鑄造)한 Al-8.6% Si-3.6% Cu 합금(合金)의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Yeo, In-Dong;Kim, Dong-Ok;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.5-13
    • /
    • 1984
  • This paper is presented for showing the effect of cooling rate on dendrite arm spacing, correlated with the chilling power of molding materials (conventional plaster, foamed plaster, silica sand) and section thickness, and also showing relationship between dendrite arm spacing and mechanical properties for an aluminum - 8.6 percent silicon - 3.6 percent copper alloy. Local solidification time $(t_f)$ and secondary dendrite arm spacing (d) could be varied widely in accordance with the molding materials and casting thickness, and the following relationship is obtained: $d=9.4t_f\;^{0.31}$ A good correlation between dendrite arm spacing and mechanical properties such as ultimate tensile strength, yield strength, hardness was found, that is, mechanical properties decreased in a linear manner with increase in log of secondary dendrite arm spacing. Ultimate tensile strength in conventional plaster mold casting decreased by 15 percent comparing with the sand casting, where as in foamed plaster mold casting, it decreased by 30 percent comparing with the sand casting. From those results, it has been verified that DAS might be the most representative parameter for predicting mechanical properties varing with the different cooling condition.

  • PDF

The Wear Properties of the Precipitation Hardened Al-Pb-Cu Bearing Alloys (석출경화된 Al-Pb-Cu계 베어링 합금의 마모거동)

  • 홍택기;허무영;임대순;안성욱
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.56-62
    • /
    • 1993
  • Al-Pb-Cu and Al-Si-Pb-Cu bearing alloys were produced by forced-stirring method and water-cooled copper mold casting to investigate the effect of the precipitation hardening on the wear properties. Sliding of produced alloy pin against a steel disc were performed under various applied loads. Lowering the wear rate and material transfer phenomena were explained by the strengthening of $\theta'$ precipitates on AI matrix. The transmission electron microscope observation reveals the role of the precipitates in the alloys with Cu. The movement of dislocations was hindered by precipitates which resulted in the reduction of plastic deformation at the worn surfaces.