DOI QR코드

DOI QR Code

A novel technique for recombinant protein expression in duckweed (Spirodela polyrhiza) turions

  • Chanroj, Salil (Department of Biotechnology, Faculty of Sciences, Burapha University) ;
  • Jaiprasert, Aornpilin (Department of Biotechnology, Faculty of Sciences, Burapha University) ;
  • Issaro, Nipatha (Division of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Burapha University)
  • Received : 2021.07.13
  • Accepted : 2021.08.17
  • Published : 2021.09.30

Abstract

Spirodela polyrhiza, from the Lemnaceae family, are small aquatic plants that offer an alternative plant-based system for the expression of recombinant proteins. However, no turion transformation protocol has been established in this species. In this study, we exploited a pB7YWG2 vector harboring the eYFP gene that encodes enhanced yellow fluorescent protein (eYFP), which has been extensively used as a reporter and marker to visualize recombinant protein localization in plants. We adopted Agrobacterium tumefaciens-mediated turion transformation via vacuum infiltration to deliver the eYFP gene to turions, special vegetative forms produced by duckweeds to endure harsh conditions. Transgenic turions regenerated several duckweed fronds that exhibited yellow fluorescent emissions under a fluorescence microscope. Western blotting verified the expression of the eYFP protein. To the best of our knowledge, this is the first report of an efficient protocol for generating transgenic S. polyrhiza expressing eYFP via Agrobacterium tumefaciens-mediated turion transformation. The ability of turions to withstand harsh conditions increases the portability and versatility of transgenic duckweeds, favoring their use in the further development of therapeutic compounds in plants.

Keywords

Acknowledgement

This work was financially supported by the Research Grant of Burapha University through National Research Council of Thailand [Grant no. 30/2558].

References

  1. Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: Genotyping technologies for Lemnaceae. Chin J Appl Environ Biol 19:1-10 https://doi.org/10.3724/SP.J.1145.2013.00001
  2. Ay Z, Mihaly R, Cserhati M, Kotai E, Pauk J (2012) The Effect of High Concentrations of glufosinate ammonium on the Yield Components of Transgenic Spring Wheat (Triticum aestivum L.) Constitutively Expressing the bar Gene. Sci World J 2012:657945
  3. Boehm R, Kruse C, Voeste D, Barth S, Schnabl H (2001) A transient transformation system for duckweed (Wolffia columbiana) using Agrobacterium-mediated gene transfer. J Appl Bot Food Qual 75(3):107-111
  4. Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T, Kusch S, Morbitzer R, Lahaye T, Panstruga R, Kumlehn J, Hensel G (2016) A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:18 https://doi.org/10.1186/s13007-016-0118-6
  5. Canto-Pastor A, Molla-Morales A, Ernst E, Dahl W, Zhai J, Yan Y, Meyers BC, Shanklin J, Martienssen R (2015) Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol (Stuttg) 17 Supplement 1:59-65 https://doi.org/10.1111/plb.12215
  6. Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol Mol Biol Plants 17(2):129-136 https://doi.org/10.1007/s12298-011-0059-5
  7. Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9(10):957-962 https://doi.org/10.1038/nbt1091-957
  8. Droge W, Broer I, Puhler A (1992) Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187(1):142-151 https://doi.org/10.1007/BF00201636
  9. Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A, Dolgov S (2015) High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57(7):653-661 https://doi.org/10.1007/s12033-015-9855-4
  10. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2(7):603-618 https://doi.org/10.1105/tpc.2.7.603
  11. Hillman WS (1961) The Lemnaceae, or duckweeds: A review of the descriptive and experimental literature. Bot Rev 27(2):221-287 https://doi.org/10.1007/BF02860083
  12. Jaiprasert A (2018). Development of duckweed transformation technique for biological application PhD thesis BURAPHA UNIVERSITY
  13. Janakiraman V, Steinau M, McCoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cell Dev Biol -Plant 38(5):404-414 https://doi.org/10.1079/IVP2002320
  14. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901-3907 https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
  15. Jusuk I, Vietz C, Raab M, Dammeyer T, Tinnefeld P (2015) Super-Resolution Imaging Conditions for enhanced yellow fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers. Sci Rep 5:14075 https://doi.org/10.1038/srep14075
  16. Karimi M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193-195 https://doi.org/10.1016/S1360-1385(02)02251-3
  17. Ko SM, Sun HJ, Oh MJ, Song IJ, Kim MJ, Sin HS, Goh CH, Kim YW, Lim PO, Lee HY, Kim SW (2011) Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. Hortic Environ Biotechnol 52(5):511 https://doi.org/10.1007/s13580-011-0007-x
  18. Krajncic B, Devide Z (1979) Flower development in Spirodela polyrrhiza (Lemnaceae). Plant Syst Evol 132(4):305-312 https://doi.org/10.1007/BF00982392
  19. Krajncic B, Slekovec-Golob M (1991) Synergistic effect of GA3 and EDDHA on the promotion of flowering in the photo-periodically neutral plant Spirodela polyrrhiza (L.) Schleiden. J Plant Physiol 139(2):240-242 https://doi.org/10.1016/s0176-1617(11)80615-2
  20. Landolt E (1986). The family of Lemnaceae -A monographic study. Biosystematic Investigations in the family of duckweeds (Lemnaceae). Veroffentlichungen des Geobotanischen Institutes der ETH Rubel, Zurich, Switzerland 1
  21. Landolt E, Kandcler R (1987). The Family of Lemnaceae -A Monographic Study. Biosystematic. Investigations in the Family of Duckweeds (Lemnaceae). Ver6ff geobot Inst ETH, Stiflung Riibel, Z~rich 2
  22. Lemon GD, Posluszny U (2000) Comparative shoot development and evolution in the Lemnaceae. Int J Plant Sci 161(5):733-748 https://doi.org/10.1086/314298
  23. Lemon GD, Posluszny U, Husband BC (2001) Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquat Bot 70(1):79-87 https://doi.org/10.1016/S0304-3770(00)00131-5
  24. Mejbel HS, Simons AM (2018) Aberrant clones: Birth order generates life history diversity in Greater duckweed, Spirodela polyrhiza. Ecol Evol 8(4):2021-2031 https://doi.org/10.1002/ece3.3822
  25. Olah V, Toth G, SzoIlosi E, Kiss T (2008) Comparative study on sensitivity of different physiological properties of Spirodela polyrrhiza (L.) Schleiden to Cr(VI) treatments. Acta Biol Szeged 52:181-182
  26. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392-1395 https://doi.org/10.1126/science.273.5280.1392
  27. Penna S, Sagi L, Swennen R (2002) Positive selectable marker genes for routine plant transformation. In Vitro Cell Dev Biol -Plant 38(2):125-128 https://doi.org/10.1079/IVP2001272
  28. Rainbolt CR, Thill DC, Yenish JP, Ball DA (2004) Herbicide-resistant grass weed development in imidazolinone-resistant wheat: Weed biology and herbicide rotation. Weed Technol 18(3):860-868 https://doi.org/10.1614/WT-03-167R
  29. Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning. A laboratory manual (2nd ed) Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
  30. Sikorski L, Baciak M, Bes A, Adomas B (2019) The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquat Toxicol 209:70-80 https://doi.org/10.1016/j.aquatox.2019.01.021
  31. Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30(2):195-204 https://doi.org/10.1007/s00726-005-0254-1
  32. Tang J, Zhang F, Cui W, Ma J (2014) Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. Planta 239(6):1299-1307 https://doi.org/10.1007/s00425-014-2053-y
  33. Thu PTL, Huong PT, Tien VV, Ham LH, Khanh TD (2015) Regeneration and transformation of gene encoding the hemagglutinin antigen of the H5N1 virus in frond of duckweed (Spirodela polyrhiza L.). J Agric Res 3(1)
  34. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509-544 https://doi.org/10.1146/annurev.biochem.67.1.509
  35. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10(6):667-674 https://doi.org/10.1038/nbt0692-667
  36. Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A, Wisniewski JP, Freyssinet G (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26(9):1511-1519 https://doi.org/10.1007/s00299-007-0361-4
  37. Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311 https://doi.org/10.1038/ncomms4311
  38. Wang W, Messing J (2012) Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol 12(5):5 https://doi.org/10.1186/1471-2229-12-5
  39. Wang W, Yang C, Tang X, Zhu Q, Pan K, Cai D, Hu Q, Ma D (2015) Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Environ Sci Pollut Res Int 22(20):15804-15811 https://doi.org/10.1007/s11356-015-4778-y
  40. Wang Y (2016) Callus induction and frond regeneration in Spirodela polyrhiza. Czech J Genet Plant Breed 52(3):114-119 https://doi.org/10.17221/134/2015-CJGPB
  41. Yamamoto YT, Rajbhandari N, Lin X, Bergmann BA, Nishimura Y AM, Stomp A (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell Dev Biol Plant 37(3):349-353 https://doi.org/10.1007/s11627-001-0062-6
  42. Yang GL, Fang Y, Xu YL, Tan L, Li Q, Liu Y, Lai F, Jin YL, Du AP, He KZ, Ma XR, Zhao H (2018) Frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor. Plant Mol Biol 98(4-5):319-331 https://doi.org/10.1007/s11103-018-0778-x
  43. Yang GL, Feng D, Liu YT, Lv SM, Zheng MM, Tan AJ (2021) Research progress of a potential bioreactor: Duckweed. Biomolecules 11(1)
  44. Yang J, Li G, Hu S, Bishopp A, Heenatigala PPM, Kumar S, Duan P, Yao L, Hou H (2018) A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (L.) Schleiden using Agrobacterium tumefaciens. Aquat Bot 151:80-86 https://doi.org/10.1016/j.aquabot.2018.08.004
  45. Zambre M, Terryn N, De Clercq J, De Buck S, Dillen W, Van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216(4):580-586 https://doi.org/10.1007/s00425-002-0914-2
  46. Zhang J, Yin K, Sun J, Gao J, Du Q, Li H, Qiu JL (2018) Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. Plant Biotechnol J 16(2):472-481 https://doi.org/10.1111/pbi.12787