• Title/Summary/Keyword: Turion

Search Result 7, Processing Time 0.024 seconds

Turion as Dormant Structure in Spirodela polyrhiza (개구리밥 휴면구조 잠아의 구조적 특성)

  • Kwak, Mi-Young;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • Hydrophytes such as Spirodela polyrhiza form dormant turions to withstand cold winters. The turion is an anatomically distinct structure from which a vegetative frond arises later during germination. The turions sink to the bottom of the pond when temperatures drop and remain there throughout the winter. In the spring, they float to the surface and germinate into a new frond from the turion primordium. Unlike fronds, turions are known to possess small aerenchyma, starch grains, and relatively dense cytoplasm. These features allow the turions to survive the cold winter season at the bottom of the pond. Spirodela polyrhiza has been investigated previously to a great extent, especially in its physiological, biochemical and ecological attributes. However, a little is known about the structural features of the frond and turion during turion development. Thus, the aim of the present study was to reveal the structural characteristics of the frond and turion with regard to tissue differentiation, aerenchyma development, starch distribution, and ultrastructure, with the use of electron microscopy. A moderate degree of mesophyll tissue differentiation was found in the frond, whereas the turion did not exhibit such differentiation. Within the frond tissue, approximately $37{\sim}45%$ of the cellular volume was occupied by a large aerenchyma, but only $9{\sim}15%$ was taken up by the aerenchyma in the turion. The turion cells, especially those of the turion primordium, were derived from frond cells, and contained cytoplasm. Their cytoplasm was densely packed with plastids, mitochondria, endoplasmic reticulum, Golgi bodies, and microtubules. Plasmodesmata were also well developed within these cells. The most striking feature observed was the distribution of starch grains within the plastids of turion cells. Before the turion sank to the bottom of the pond, a considerable amount of starch accumulated in the plastid stroma. The starch grains dissolved when temperatures rose in the spring, and this promptly provided the nutrients which the primordium needed for turion germination. The turion therefore, was an appropriate dormant structure for free-floating, reduced hydrophytes like Spirodela polyhriza due to its small aerenchyma and large starch grains that aided in the purpose of sinking below the surface of the water to survive cold winters. The new fronds that arose from such turions grew rapidly in the spring, beginning the new life cycle.

A novel technique for recombinant protein expression in duckweed (Spirodela polyrhiza) turions

  • Chanroj, Salil;Jaiprasert, Aornpilin;Issaro, Nipatha
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.156-164
    • /
    • 2021
  • Spirodela polyrhiza, from the Lemnaceae family, are small aquatic plants that offer an alternative plant-based system for the expression of recombinant proteins. However, no turion transformation protocol has been established in this species. In this study, we exploited a pB7YWG2 vector harboring the eYFP gene that encodes enhanced yellow fluorescent protein (eYFP), which has been extensively used as a reporter and marker to visualize recombinant protein localization in plants. We adopted Agrobacterium tumefaciens-mediated turion transformation via vacuum infiltration to deliver the eYFP gene to turions, special vegetative forms produced by duckweeds to endure harsh conditions. Transgenic turions regenerated several duckweed fronds that exhibited yellow fluorescent emissions under a fluorescence microscope. Western blotting verified the expression of the eYFP protein. To the best of our knowledge, this is the first report of an efficient protocol for generating transgenic S. polyrhiza expressing eYFP via Agrobacterium tumefaciens-mediated turion transformation. The ability of turions to withstand harsh conditions increases the portability and versatility of transgenic duckweeds, favoring their use in the further development of therapeutic compounds in plants.

Features of Plastids within Reduced Spirodela polyrhiza (축소된 개구리밥 식물체 내 색소체 특성)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Reduced plants of Spirodela polyrhiza consisting only of fronds, stalks and roots form turions during dormancy. In development, mature fronds produce offspring fronds by vegetative reproduction, and turions arise laterally from the mother frond before dormancy. The turion primordium is derived from the frond, while the frond primordium forms within the turion tissue. In the present study, cellular features, especially those of the plastids, of the above four tissue types have been examined and compared using electron microscopy. Proplastids, found to be numerous in the frond and turion primordia, differentiated into chloroplasts rapidly upon growth. The proplastids were small and the thylakoidal membrane system was rudimentary, howerver the chloroplasts exhibited variation by cell type. Chloroplasts were found within cells of the frond, stalk and root tissue. The thylakoidal membrane system, which formed grana stacks, was moderately developed within frond chloroplasts, while only a few were present in those of the stalk and root cortical cells. One to two starch grains were accumulated within frond chloroplasts, but little to none were found in stalk and root cortical chloroplasts. Contrary to other types of root chloroplasts, those found in the root cap cells developed chloroplasts similar to the frond type. Unlike proplastids of the turion primordia, numerous large amyloplasts occupied most of the turion cell volume. Moreover, the turion cell produced quite large starch grain (s) within the amyloplasts. Accumulation of the starch grains continued until they occupied the most of the stroma and in some cases, individual starch grains reached up to $9.0{\mu}m$ in length. None to little, if any, thylakoidal or internal membranous systems were seldom detected in these amyloplasts. Although the degree of cellular and tissue differentiation was rather minimal within their reduced body, the functional differentiation of Spirodela polyrhiza was very efficient, as is the case in other advanced species.

Cellular Features of the Fronds and Turions in Spirodela polyrhiza

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.140-145
    • /
    • 2013
  • Structural aspects of highly reduced vegetative organs in the aquatic Spirodela polyrhiza were examined using scanning and transmission electron microscopy. The study focused mainly on young and mature fronds with turions and their cellular features were compared. Mature fronds were composed of thin-walled chlorenchyma with highly vacuolated cells; most of which were frequently occupied by either tanniferous deposits or various crystals. Fronds of photoautotrophic offspring were produced from the meristematic region of the reproductive pockets within mother fronds, where they remained until separation. Moderate degrees of wall ingrowth and plasmalemma proliferation were detected briefly in the epidermis of daughter fronds during early development. Vascular tissues were generally much reduced, but air chambers were well-established in fronds. Chloroplasts having grana with several thylakoids were distributed throughout the plant, but starch grains were encountered frequently in the mesophyll chloroplasts of younger fronds and initial stage of the turion. Their cytoplasm was dense with small vacuoles in most cases. Further, big starch grains, up to several microns, occupying most of the plastid volume were formed in the turion prior to sink for overwintering. Plasmodesmata were numerous in the examined tissues, except mature turions, suggesting a symplastic pathway of the metabolites within body.

Distribution, Life History and Growth Characteristics of the Utricularia japonica Makino in the East Coastal Lagoon, Korea (동해안의 석호에서 통발의 분포, 생활사 그리고 생장 특성)

  • Jeong, Yeon-In;Hong, Bo-Ram;Kim, Young-Chul;Lee, Kyu-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.110-123
    • /
    • 2016
  • In order to obtain scientific information for the conservation of Utricularia japonica Makino, rare plant species, we investigated life history, phenology, growth and distribution in the east coastal region of Korea. Seven habitats of U. japonica were confirmed in this study. Turion of U. japonica rests overwinter at the bottom and ripens at the water surface and then usually germinate and sprout when the water warms in spring. A single shoot grown from turion divided into several shoots. Shoot decomposition started in October and formed a new turion at the end of the decomposed shoot. Flowering period was from early July to late October. Percentage of flowering ramets was significantly low as 6.3%. U. japonica showed the fastest growth rate from April to July, the maximum growth in August and the highest biomass in October. U. japonica tended to be concentrated in larger ramets in the water depth of 50 cm~150 cm in Cheonjin lake. The main factors affecting the growth of U. japonica were water temperature and turbidity. The establishment and growth of U. japonica in Cheonjin lake were determined by responses to water temperature with seasonal change and to light conditions caused by the different plants. These conditions affect the temporal and spatial distribution of U. japonica and population change. The findings of this study would be helpful to provide the basic information needed for the conservation and restoration of U. japonica.

First record of Myriophyllum oguraense Miki (Haloragaceae) in Korea (한반도 미기록식물: 긴동아물수세미)

  • Choi, Hyeok Jae;Jang, Ju-Eun;Cheong, Seon-Woo;Shiga, Takashi
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.2
    • /
    • pp.77-80
    • /
    • 2014
  • Here we report a previously unrecorded species of Korean Myriophyllum L. (Haloragaceae). This taxon, M. oguraense Miki has been regarded as a Japanese endemic for some 60 years. Myriophyllum oguraense and its closely related M. verticillatum L. share the characteristic of having pectinate emergent leaves that are similar in shape to, but much smaller than, the submerged leaves. However, the primary characteristic that differentiates these taxa is the turion shape (club shaped in M. verticillatum and linear in M. oguraense). The common name, 'Gin-dong-a-mul-su-sae-mi' was also newly given considering its characteristic turion shape. Photographs and a key to Korean Myriophyllum species are provided in addition to complete descriptions including information on nomenclatural types, distributions and specimens examined.

An Unrecorded Species from Korean Flora: Vallisneria spinulosa (Hydrocharitaceae) (한국산 미기록 식물: 낙동나사말(자라풀과))

  • Na, Hye Ryun;Shin, Hyunchur;Choi, Hong-Keun
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.1
    • /
    • pp.69-77
    • /
    • 2008
  • We report Vallisneria spinulosa S. Z. Yan (Hydrocharitaceae) as an unrecorded species from the flora of Korea. This aquatic vascular plant occurs in reservoirs, streams, and ditches at Changnyeong, Changwon, and Gimhae which belong to Nakdong river basin. Vallisneria spinulosa is distinguishable from V. natans (Lour.) Hara already known to Korean flora by the presence of turion and hairs at base of stamen, adnation between pistil and staminodia, the number of stamen, and shape of fruit and seed. V. spinulosa is similar to V. desnseserrulata Makino in the viewpoint of distribution (Japan and southern China), but V. spinulosa has three to five epidermal wings on the surface of seed.