DOI QR코드

DOI QR Code

Trends in the development of discriminating between Angelica L. species using advanced DNA barcoding techniques

진보된 DNA barcoding 기술을 이용한 당귀(Angelica)속 식물의 기원 판별 기술에 관한 연구 동향

  • Lee, Shin-Woo (Department of Plant & Biomaterials Science, Chilam Campus, Gyeongsang National University) ;
  • Shin, Yong-Wook (Department of Plant & Biomaterials Science, Chilam Campus, Gyeongsang National University) ;
  • Kim, Yun-Hee (Department of Biology Education, College of Education, IALS, Gyeongsang National University)
  • 이신우 (경상국립대학교 생명과학대학 항노화신소재과학과) ;
  • 신용욱 (경상국립대학교 생명과학대학 항노화신소재과학과) ;
  • 김윤희 (경상국립대학교 사범대학 생물교육과 (농업생명과학연구원))
  • Received : 2021.08.18
  • Accepted : 2021.08.31
  • Published : 2021.09.30

Abstract

We reviewed current research trends for discriminating between species of the Angelica genus, a group of important medicinal plants registered in South Korea, China, and Japan. Since the registered species for medicinal purposes differ by country, they are often adulterated as well as mixed in commercial markets. Several DNA technologies have been applied to distinguish between species. However, one of the restrictions is insufficient single-nucleotide polymorphisms (SNPs) within the target DNA fragments; in particular, among closely-related species. Recently, amplification refractory mutation system (ARMS)-PCR and highresolution melting (HRM) curve analysis techniques have been developed to solve such a problem. We applied both technologies, and found they were able to discriminate several lines of Angelica genus, including A. gigas Nakai, A. gigas Jiri, A. sinensis, A. acutiloba Kitag, and Levisticum officinale. Furthermore, although the ITS region differs only by one SNP between A. gigas Nakai and A. gigas Jiri, both HRM and ARMS-PCR techniques were powerful enough to discriminate between them. Since both A. gigas Nakai and A. gigas Jiri are native species to South Korea and are very closely related, they are difficult to discriminate by their morphological characteristics. For practical applications of these technologies, further research is necessary with various materials, such as dried or processed materials (jam, jelly, juice, medicinal decoctions, etc.) in commercial markets.

본 리뷰에서는 우리나라, 중국, 일본 등에서 각각 그 기원식물을 달리하는 당귀 속 식물 계통의 기원 계통을 판별하기 위한 DNA barcoding 기술의 발전현황에 관하여 조사하였다. 약용작물들에 대한 종의 기원을 판별하기 위하여 단일염기다형성을 이용한 DNA 바코드의 개발에 관한 연구가 활발하게 진행되어왔다. 그러나 가까운 근연종간에는 단일염기다형성을 보이는 염기의 수가 많지 않아 어려움이 있었다. 이러한 문제점을 해결하기 위하여 ARMS-PCR 및 HRM curve 패턴 비교 분석기술 등이 개발되었다. 이들 기술을 적용하여 국내 자생종 및 국외에서 수집된 당귀 계통들에 대하여 이들의 기원을 판별 할 수 있는 조건이 확립되었다. 특히 단하나의 단일염기다형성을 보이는 국내 자생종인 참당귀와 세발당귀의 판별이 가능하여 향후 현장에 적용이 가능한 실용화 연구가 필요한 것으로 조사되었다. 그러나 이들 연구결과는 그 기원이 확인된 계통의 시료들을 대상으로 분리한 순수 DNA를 대상으로 조사한 결과로, 현장에서 실용화하기에는 아직 보다 많은 연구가 필요하다. 실제로 일정한 비율로 혼합한 계통들을 대상으로 분리한 DNA를 대상으로 한 후속 연구가 필요하다. 또한, 수확 후 가공 및 처리 방법에 따른 시료들에 대한 후속 연구도 필요하다. 당귀와 같은 약용작물은 건조한 시료, 다양한 가공제품(잼, 잴리, 쥬스 등), 약탕(탕재) 등으로 유통이 되기 때문에 이들에 대한 시료별 적용 가능성에 대한 연구도 필요한 것으로 조사되었다.

Keywords

References

  1. Blank I, Schieberle P (1993) Analysis of the seasoning-like flavour substances of a commercial lovage extract (Levisticum officinale Koch.). Flavour Fragr J 8:191-195 https://doi.org/10.1002/ffj.2730080405
  2. Bylaite E, Venskutonis RP, Roozen JP (1998) Influence of harvesting time on the composition of volatile components in dierent anatomical parts of lovage (Levisticum officinale Koch.). J Agric Food Chem 46:3735-3740 https://doi.org/10.1021/jf9800559
  3. Chen C, Chen Y, Huang W, Jiang Y, Zhang H, Wu W (2019) Mining of simple sequence repeats (SSRs) loci and development of novel transferability-across EST-SSR markers from de novo transcriptome assembly of Angelica dahurica. PLoS ONE 14:e0221040 https://doi.org/10.1371/journal.pone.0221040
  4. Choi HY, Choi YJ, Lee JH, Ham IH (2004) Sequencing analysis on the ITS region and AFLP analysis to identify dried medicinal Angelica species. Kor J Herbol 19:91-99
  5. Choo BK, Moon BC, i Y, Kim BB, Choi G, Yoon TS, Kim HK (2009) Development of SCAR markers for the discrimination of three species of medicinal plants, Angelica decu rsiva (Peucedanum decursivum), Peucedanum praeruptorum and Anthricus sylvestris, based on the internal transcribed spacer (ITS) sequence and random amplified polymorphic DNA (RAPD). Biol Pharm Bull 32:24-30 https://doi.org/10.1248/bpb.32.24
  6. EMA, European Medicines Agency. Community Herbal Monograph on Levisticum ocinale Koch,Radix; EMA, European Medicines Agency: Amsterdam, The Netherlands, 2012; Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/draft-community-herbal-monographlevisticum-officinale-koch-radix_en.pdf (accessed on 15 January 2020)
  7. Feng T, Liu S, He XJ (2010) Molecular authentication of the traditional Chinese medicinal plant Angelica sinensis based on internal transcribed spacer of nrDNA. Electron J Biotechnol 13:DOI: 10.2225. http://www.ejbiotechnology.info/content/vol13/issue1/full/13/ https://doi.org/10.2225
  8. Foodcode (2015) 식품의 기준 및 규격 https://members.wto.org/crnattachments/2015/SPS/KOR/15_4289_00_x.pdf
  9. Gil JS, Park SI, Lee Y, Kim HB, Kim SC, Kim OT, Cha SW, Jung CS, Um YR (2016) Current status and prospects of the authentication of Angelica species. J Plant Biotechnol 43: 151-156 https://doi.org/10.5010/JPB.2016.43.2.151
  10. Han EH, Kim YH, Lee SW (2015) Development of molecular biological techniques for the differentiation of medicinal plant species. J Plant Biotechnol 42:6-12 https://doi.org/10.5010/JPB.2015.42.1.6
  11. Han JP, Pang XH, Liao BS, Yao H, Song JY, Chen SI (2016a) An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep 18723:1-6
  12. Han EH, Cho KM, Goo YM, Kim MB, Shin YW, Kim YH, Lee SW (2016b) Development of molecular markers, based on chloroplast and ribosomal DNA regions, to discriminate three popular medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multiflorum. Mol Biol Rep 43:323-332 https://doi.org/10.1007/s11033-016-3959-1
  13. Han B-X, Yuan Y, Huang LQ, Zhao Q, Tan L-L, Song X-W, He X-M, Xu T, Liu F, Wang J (2017) Specific PCR identification between Peucedanum praeruptorum and Angelica decursiva and identification between them and adulterant using DNA barcode. Pharmacognosy Magazine 13:38-45
  14. Han L, Liu DL, Zeng QK, Shi MQ, Zhao LX, He Q, Kuang X, Du JR.(2018) The neuroprotective effects and probable mechanisms of Ligustilide and its degradative products on intracerebral hemorrhage in mice. Int Immunopharmacol 63:43-57 https://doi.org/10.1016/j.intimp.2018.06.045
  15. He Y, Hou, Fan G, Song Z, Arain S, Shu H, Tang C, Yue Q, Zhang Y (2012) Authentication of Angelica anomala Ave-Lall cultivars through DNA barcodes. Mitochondrial DNA 23:100-105 https://doi.org/10.3109/19401736.2012.660924
  16. Kim SA, Oh HK, Kim JY, Hong JW, Cho SI (2011) A Review of Pharmacological Effects of Angelica gigas, Angelica sinensis, Angelica acutiloba and their Bioactive Compounds. J Kor Ori Med 32:1-24
  17. Kim WJ, Moon BC, Yang S, Han KS, Choi G, Lee AY. (2016) Rapid authentication of the herbal medicine plant species Aralia continentalis Kitag. and Angelica biserrata C.Q. Yuan and R.H. Shan using ITS2 sequences and multiplex-SCAR markers. Molecules 21:270-276 https://doi.org/10.3390/molecules21030270
  18. Kim YH, Shin YW, Lee SW (2018) Practical application of the Bar-HRM technology for utilization with the differentiation of the origin of specific medicinal plant species. J Plant Biotechnol 45:9-16 https://doi.org/10.5010/JPB.2018.45.1.009
  19. Korea Food & Drug Administration, "The Korean Herbal Pharma copoeia," Korea Food & Drug Administration, Seoul, 2006
  20. Lee MY, Li SH, Ju S, Han KS, Jeong GJ, An DG, Kang HC, Ko BS (2000) Discrimination of the three Angelica species using the RAPDs and Internal Root Structure. Kor J Med Crop Sci 8:243-249
  21. Lee SJ, Shin YW, Kim YH, Lee SW (2017) Identification of specific SNP molecular marker from Cudrania tricuspidata using DNA sequences of chloroplast TrnL-F region. J Plant Biotechnol 44:135-141 https://doi.org/10.5010/JPB.2017.44.2.135
  22. Lee SW, Lee SJ, Kim YH (2018) Development of specific SNP molecular marker from Thistle using DNA sequences of ITS region. J Plant Biotechnol 45:102-109 https://doi.org/10.5010/JPB.2018.45.2.102
  23. Lee SW, Lee SJ, Han EH, Shin YW, Kim YH (2021a) Development of molecular markes for the differentiation of Angelica gigas Jiri line by using ARMS-PCR analysis. J Plant Biotechnol 48:26-33 https://doi.org/10.5010/JPB.2021.48.1.026
  24. Lee SW, Lee SJ, Han EH, Shin YW, Kim YH (2021b) Development of specific ploymorphism molecular markes for Angelica gigas Nakai. J Plant Biotechnol 48:71-76 https://doi.org/10.5010/JPB.2021.48.2.71
  25. Liu Q, Lu Z, He W, Li F, Chen W, Li C, Chao Z, Tian E (2020a) Development and characterization of 16 novel microsatellite markers by transcriptome sequencing for Angelica dahurica and test for cross-species amplification. BMC Plant Biol 20:152-160 https://doi.org/10.1186/s12870-020-02374-8
  26. Liu M, Hu X, Wang X, Zhang J, Peng X, Hu Z and Liu Y (2020b) Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data. Front Plant Sci 11:600249 https://doi.org/10.3389/fpls.2020.600249
  27. Long FY, Shi MQ. Zhou HJ, Liu DL, Sang N, Du JR. (2018) Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice. Eur J Pharmacol 820:198-205 https://doi.org/10.1016/j.ejphar.2017.12.019
  28. Lu Y, Cheng T, Zhu T, Jiang D, Zhou S, Jin L, Yuan Q, Luqi Huang L (2015) Isolation and characterization of 18 polymorphic microsatellite markers for the "Female Ginseng" angelica sinensis (Apiaceae) and cross-species amplification. Biochem Sys Ecol 61:488-492 https://doi.org/10.1016/j.bse.2015.07.013
  29. Ma Z. Bai, L. (2012) The anti-inflammatory effect of Z-Ligustilide in experimental ovariectomised osteopenic rats. Inflammation 35:1793-1797 https://doi.org/10.1007/s10753-012-9499-5
  30. Ma Z, Bai L (2013) Anti-inflammatory Effects of Z-Ligustilide Nanoemulsion. Inflammation 36:294-299 https://doi.org/10.1007/s10753-012-9546-2
  31. Mei Z. Zhang C. Khan MA. Zhu Y. Tania M. Luo P. Fu J (2015) Efficiency of improved RAPD and ISSR markers in assessing genetic diversity and relationships in Angelica sinensis (Oliv.) Diels varieties of China. Electron J Biotechnol 18:96-102 https://doi.org/10.1016/j.ejbt.2014.12.006
  32. Mizukami H, Hao BS, Tanaka T (1997) Nucleotide sequence of 5S-rDNA intergenic spacer region on Angelica acutiloba. Nat Med 51:376-378
  33. Newton CR, Graham A, Heptinstall LE (1989) Analysis of point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl Acids Res 17:2503-2516 https://doi.org/10.1093/nar/17.7.2503
  34. Noh P, Kim WJ, Yang S, Park I, Moon BC (2018) Authentication of the herbal medicine Angelicae Dahuricae Radix using an ITS sequence- based multiplex SCAR assay. Molecules 23:2134-2146 https://doi.org/10.3390/molecules23092134
  35. Park IK, Yang S, Kim WJ, Song JH, Lee HS, Lee HO, Lee JH, Ahn SN, Moon BC (2019) Sequencing and comparative analysis of the chloroplast genome of Angelica polymorpha and the development of a novel indel marker for species. Molecules 24:1038-1052 https://doi.org/10.3390/molecules24061038
  36. Sung JS, Bang KW, Park CH, Park CG, Yu HS, Park HW, Seong NS (2004) Discrimination of Angelicae Radix Bsed on Anatomical Characters. Kor J Med Crop Sci 12:67-72
  37. Yu HS, Park CH, Park CG, Kim YG, Park HW, Seong NS (2004) Growth characteristics and tield of the three species of genus Angelica. Kor J Med Crop Sci 12:43-46
  38. Yuan QJ. Zhang B. Jiang D. Zhang WJ. Lin TY. Wang NH. Chiou SJ, Huang LQ (2015) Identification of species and materia medica within Angelica L, (Umbelliferae) based on phylogeny inferred from DNA barcodes. Mol Ecol Resour 15:358-371 https://doi.org/10.1111/1755-0998.12296
  39. Zhang X, Ji K, Li Y, Chen C, Li X, Liu L (2003) Studies on establishing rRNA gene map of Angelica sinensis and Rheum palmatum from Gansu by DNA sequencing. J Chi Med Mat 26:481-4 https://doi.org/10.3321/j.issn:1001-4454.2003.07.007
  40. Zhang C, Mei Z, Cheng J, He Y, Khan MA, Luo P, Imani S, Fu J (2015)Development of SCAR markers based on improved RAPD amplification fragments and molecular cloning for authentication of herbal medicines Angelica sinensis, Angelica acutiloba and Levisticum officinale. Nat Prod Com 10:1743-1747
  41. Zhao KJ, Dong TTX, Tu PF, Song ZH, Lo CK, Tsim KWK (2003) Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. J Agr Food Chem 51:2576-25 https://doi.org/10.1021/jf026178h