DOI QR코드

DOI QR Code

고등식물의 질산시그널에 의한 유전자 발현제어 관련 전사인자의 연구현황

Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants

  • 정유진 (한경대학교 생명공학부 원예생명공학전공) ;
  • 박정순 (한경대학교 생명공학부 원예생명공학전공) ;
  • 고지윤 (한경대학교 생명공학부 원예생명공학전공) ;
  • 이효주 (한경대학교 생명공학부 원예생명공학전공) ;
  • 김진영 (한경대학교 생명공학부 원예생명공학전공) ;
  • 이예지 (한경대학교 생명공학부 원예생명공학전공) ;
  • 남기홍 (한경대학교 생명공학부 원예생명공학전공) ;
  • 조용구 (충북대학교 식물자원과학과) ;
  • 강권규 (한경대학교 생명공학부 원예생명공학전공)
  • Jung, Yu Jin (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Park, Joung Soon (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Go, Ji Yun (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Lee, Hyo Ju (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Kim, Jin Young (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Lee, Ye Ji (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Nam, Ki Hong (Division of Horticultural Biotechnology, Hankyong National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Kang, Kwon Kyoo (Division of Horticultural Biotechnology, Hankyong National University)
  • 투고 : 2021.08.10
  • 심사 : 2021.09.01
  • 발행 : 2021.09.30

초록

질산염은 많은 유전자의 발현을 조절하고 생장과 발육과정에서 매우 중요한 영양소이자 시그널 분자이다. 본 연구는 고등식물에서 질산 신호에 의한 유전자발현제어 관련 전사인자의 연구현황을 소개하고자 한다. 질산 환원 효소는 질소 동화 경로상의 효소이며, 질산이온을 아질산이온으로 환원하는 과정을 촉매한다. 질산이온, 빛, 대사산물, 식물호르몬, 저온, 가뭄 등의 여러 요인이 질산환원효소 유전자의 발현 수준과 생리적 역할과 같은 질산환원효소 활성을 조절한다. 최근 질산 환원 효소 유전자의 발현제어에 관여하고 있는 몇몇 전사인자들이 식물에서 분리되었다. NODULE-INCEPTION-like proteins (NLPs)는 질산 환원 효소 유전자의 질산 유도성 발현에 관여하는 전사인자이다. NLPs는 질산 수송체, 아질산 수송체, 아질산 환원 효소에 관련된 유전자의 질산 유도성 발현을 제어한다. 질산 환원 경로와 관련된 유전자의 발현 수준은 질산에 반응하여 NLPs에 의해 협조적으로 조절된다. 따라서 식물에서 질산염의 기능을 이해하면 질소 사용량이 적은 작물을 육성할 수 있다.

Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.

키워드

과제정보

본 연구는 2021년도 농촌진흥청 신육종기술실용화사업단 (과제번호: PJ01477203)의 지원으로 수행되었음.

참고문헌

  1. Almeida DM, Gregorio GB, Oliveira MM, Saibo NJM (2017) Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Mol. Biol. 93:61-77 https://doi.org/10.1007/s11103-016-0547-7
  2. Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal 57:426-435 https://doi.org/10.1111/j.1365-313X.2008.03695.x
  3. Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014) The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J. Exp. Bot. 65:5577-5587 https://doi.org/10.1093/jxb/eru261
  4. Cheng CL, Dewdney J, Kleinhofs A, Goodman HM (1986) Cloning and nitrate induction of nitrate reductase mRNA. Proceedings of the National Academy of Sciences 83:6825-6828 https://doi.org/10.1073/pnas.83.18.6825
  5. Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859-868 https://doi.org/10.1105/tpc.7.7.859
  6. Deng M, Moureaux T, Caboche M (1989) Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene.Plant Physiology 91:304-309 https://doi.org/10.1104/pp.91.1.304
  7. Forde BG (2002) The role of long-distance signalling in plant responses to nitrate and other nutrients. J. Exp. Bot. 53:39-43 https://doi.org/10.1093/jxb/53.366.39
  8. Gowri G, Kenis JD, Ingemarsson B, Redinbaugh MG, Campbell WH (1992) Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant molecular biology 18:55-64 https://doi.org/10.1007/BF00018456
  9. Hilhorst HW, Karssen CM (1989) Nitrate reductase independent stimulation of seed germination in Sisymbrium officinale L. (hedge mustard) by light and nitrate. Annals of Botany 63:131-137 https://doi.org/10.1093/oxfordjournals.aob.a087715
  10. Hoff T, Truong HN, Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation. Plant. Cell Environ. 17:489-506 https://doi.org/10.1111/j.1365-3040.1994.tb00145.x
  11. Konishi M and Yanagisawa S (2010) Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. The Plant Journal 63:269-282 https://doi.org/10.1111/j.1365-313X.2010.04239.x
  12. Konishi M, Yanagisawa S (2011a) Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochemical and Biophysical Research Communications 411:708-713 https://doi.org/10.1016/j.bbrc.2011.07.008
  13. Konishi M, Yanagisawa S (2011b) The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant and Cell Physiology 52:824-836 https://doi.org/10.1093/pcp/pcr033
  14. Konishi M, Yanagisawa S (2013a) An NLP-binding site in the 3'flanking region of the nitrate reductase gene confers nitrate-inducible expression in Arabidopsis thaliana (L.) Heynh. Soil Science and Plant Nutrition 59:612-620 https://doi.org/10.1080/00380768.2013.809602
  15. Konishi M, Yanagisawa S (2013b) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature communications 4:1-9
  16. Konishi M, Yanagisawa S (2014) Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J. Exp. Bot. 65:5589-5600 https://doi.org/10.1093/jxb/eru267
  17. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, et al. (2014) Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 65:789-798 https://doi.org/10.1093/jxb/eru001
  18. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr. Opin. Plant Biol. 13:265-272 https://doi.org/10.1016/j.pbi.2009.12.003
  19. LaBrie ST, Wilkinson JQ, Crawford NM (1991) Effect of chlorate treatment on nitrate reductase and nitrite reductase gene expression in Arabidopsis thaliana. Plant physiology 97:873-879 https://doi.org/10.1104/pp.97.3.873
  20. Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW, Yang W, Jonsson H (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proceedings of the National Academy of Sciences 115:1382-1387 https://doi.org/10.1073/pnas.1718670115
  21. Liu KH, Niu Y, Konishi M, Wu Y, Du H, Sun Chung H, et al. (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545:311-316 https://doi.org/10.1038/nature22077
  22. Maeda SI, Konishi M, Yanagisawa S, Omata T (2014) Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant and Cell Physiol 55:1311-1324 https://doi.org/10.1093/pcp/pcu075
  23. Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, et al. (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4:1713 https://doi.org/10.1038/ncomms2650
  24. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, and Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture Ann Bot. 105:1141-1157 https://doi.org/10.1093/aob/mcq028
  25. Obertello M, Shrivastava S, Katari MS, Coruzzi GM (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant physiology 168:1830-1843 https://doi.org/10.1104/pp.114.255877
  26. Pouteau S, Cherel I, Vaucheret H, Caboche M (1989) Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate reductase-deficient mutants. The Plant Cell 1:1111-1120 https://doi.org/10.1105/tpc.1.11.1111
  27. Redinbaugh MG, Campbell WH (1993) Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primary response to nitrate (evidence for an organ-specific response). Plant physiology 101:1249-1255 https://doi.org/10.1104/pp.101.4.1249
  28. Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A, Gutierrez RA (2015) The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant physiology 169:1397-1404 https://doi.org/10.1104/pp.15.00961
  29. Sakakibara H, Takei K, Sugiyama T (1996) Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is a prosthetic group of nitrite reductase. The Plant Journal 10:883-892 https://doi.org/10.1046/j.1365-313X.1996.10050883.x
  30. Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-Like Proteins in Arabidopsis, Rice, and Lotus japonicus. J. Mol. Evol. 60:229-237 https://doi.org/10.1007/s00239-004-0144-2
  31. Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell 9:783-798 https://doi.org/10.1105/tpc.9.5.783
  32. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant physiology 136:2483-2499 https://doi.org/10.1104/pp.104.047019
  33. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature, 402:191-195 https://doi.org/10.1038/46058
  34. Takei K, Sakakibara H, Taniguchi M and Sugiyama, T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant and Cell Physiology 42:85-93 https://doi.org/10.1093/pcp/pce009
  35. Tang PS, Wu HY (1957) Adaptive formation of nitrate reductase in rice seedlings. Nature 179:1355-1356 https://doi.org/10.1038/1791355a0
  36. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS letters 581:2290-2300 https://doi.org/10.1016/j.febslet.2007.04.047
  37. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol. 132:556-567 https://doi.org/10.1104/pp.103.021253
  38. Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant physiology 136:2512-2522 https://doi.org/10.1104/pp.104.044610
  39. Wang R, Xing X, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol. 151:472-478 https://doi.org/10.1104/pp.109.140434
  40. Wu J, Zhang Z, Xia J, Alfatih A, Song Y, Huang Y (2020) Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J pbi.13475
  41. Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, et al. (2016) NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun. 7:13179 https://doi.org/10.1038/ncomms13179
  42. Yu J, Xuan J, Tian Y, Fan L, Sun J, Tang W (2020) Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol. J. 19:167-176 https://doi.org/10.1111/pbi.13450
  43. Yu LH, Wu J, Tang H, Yuan Y, Wang SM, Wang YP, et al. (2016) Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Sci. Rep. 6:27795 https://doi.org/10.1038/srep27795
  44. Zhao L, Liu F, Crawford NM, Wang Y (2018) Molecular regulation of nitrate responses in plants. International journal of molecular sciences 19:2039 https://doi.org/10.3390/ijms19072039