DOI QR코드

DOI QR Code

Thermal Stress Relief through Introduction of a Microtrench Structure for a High-power-laser-diode Bar

높은 광출력을 갖는 Laser Diode Bar의 열응력 개선: 마이크로-홈 도입을 통한 응력 분포 변화 분석

  • Jeong, Ji-Hun (Department of Information Communication Engineering, Inha University) ;
  • Lee, Dong-Jin (Department of Information Communication Engineering, Inha University) ;
  • O, Beom-Hoan (Department of Information Communication Engineering, Inha University)
  • 정지훈 (인하대학교 정보통신공학과 광소자 및 LED 연구실) ;
  • 이동진 (인하대학교 정보통신공학과 광소자 및 LED 연구실) ;
  • 오범환 (인하대학교 정보통신공학과 광소자 및 LED 연구실)
  • Received : 2021.08.25
  • Accepted : 2021.09.16
  • Published : 2021.10.25

Abstract

Relief of thermal stress has received great attention, to improve the beam quality and stability of high-power laser diodes. In this paper, we investigate a microtrench structure engraved around a laser-diode chip-on-submount (CoS) to relieve the thermal stress on a laser-diode bar (LD-bar), using the SolidWorks® software. First, we systematically analyze the thermal stress on the LD-bar CoS with a metal heat-sink holder, and then derive an optimal design for thermal stress relief according to the change in microtrench depth. The thermal stress of the front part of the LD-bar CoS, which is the main cause of the "smile effect", is reduced to about 1/5 of that without the microtrench structure, while maintaining the thermal resistance.

열응력 완화 기술은 고출력 레이저 다이오드의 빔의 품질과 안정성을 향상시키기 위한 주요 요소기술로 큰 주목을 받고 있다. 본 연구에서는 레이저 다이오드 바(LD-bar) chip-on-submount (CoS)에 발생하는 열응력 분포 양상을 SolidWorks 소프트웨어를 사용하여 해석하고, 마이크로-홈 구조 도입에 따라 열응력 완화에 미치는 영향을 체계적으로 분석한다. 마이크로-홈 구조는 누적응력을 차단하는 효과가 있는 반면, 열흐름을 방해하는 역기능도 있으므로, 시스템 구조와 방열금속판 두께에 따라 홈 깊이를 최적화할 필요가 있다. 간단히 도입된 예시구조에 대하여, LD-bar CoS의 칩 홀더 금속판에 도입하는 마이크로-홈 구조 최적화를 통해 칩 전면부 표면 응력을 마이크로-홈 구조가 없는 경우의 약 1/5 정도로 낮추었다. 향후 초고출력 시스템에서 방열을 위한 열저항과 광출력 빔크기를 최소한으로 유지하면서, 열응력을 효과적으로 완화시키는 구조로 활용이 기대된다.

Keywords

Acknowledgement

이 연구는 고효율 레이저 특화연구실 프로그램의 일환으로 방위사업청과 국방과학연구소의 지원을 받아 수행되었음 (NO. UD190015ID).

References

  1. Y. Izawa, N. Miyanaga, J. Kawanaka, and K. Yamakawa, "High power lasers and their new applications," J. Opt. Soc. Korea 12, 178-185 (2008). https://doi.org/10.3807/JOSK.2008.12.3.178
  2. H. Zhong, T. Duan, H. Lan, M. Zhou, and F. Gao, "Review of low-cost photoacoustic sensing and imaging based on laser diode and light-emitting diode," Sensors 18, 2264 (2018). https://doi.org/10.3390/s18072264
  3. M. Xue, N. Yongqiang, Z. Jianwei, Z. Xing, P. Hangyu, Q. Li, and W. Lijun, "Research progress of red semiconductor laser diodes for laser display," Laser Optoelectron. Prog. 56, 180001 (2019). https://doi.org/10.3788/LOP56.180001
  4. T. Ozturk and O. Morikawa, "THz applications of multimode laser diodes: a review," Turk. J. Phys. 43, 303-313 (2019).
  5. D. Agop-Forna, C. Cretu, C. Topoliceanu, M. Salceanu, D. Vasincu, and N. Forna, "Clinical applications of diode lasers in oral surgery: a review," Romanian J. Oral Rehabil. 13, 265-270 (2021).
  6. H. Liu, S. Sun, L. Zheng, G. Wang, W. Tian, D. Zhang, H. Han, J. Zhu, and Z. Wei, "Review of laser-diode pumped Ti:sapphire laser," Microw. Opt. Technol. Lett. 63, 2135-2144 (2021). https://doi.org/10.1002/mop.32882
  7. M. Voss, C. Lier, U. Menzel, A. Barwolff, and T. Elsaesser, "Time-resolved emission studies of GaAs/AlGaAs laser diode arrays on different heat sinks," J. Appl. Phys. 79, 1170-1172 (1996). https://doi.org/10.1063/1.360900
  8. E. Dabrowska, M. Teodorczyk, L. Lipinska, R. Kozinski, and A. Malag, "Application of graphene oxide for reduction of thermal resistance of high-power laser diodes," Electron. Lett. 49, 1550-1551 (2013). https://doi.org/10.1049/el.2013.3273
  9. P. Wen, D. Li, S. Zhang, J. Liu, L. Zhang, K. Zhou, M. Feng, Z. Li, A. Tian, and H. Yang, "High accuracy thermal resistance measurement in GaN/InGaN laser diodes," Solid-State Electron. 106, 50-53 (2015). https://doi.org/10.1016/j.sse.2015.01.003
  10. Z. Wu, S. D. You, Q. Du, and Y. Huang, "Influence of smile effect on beam properties of spectrally combined beams based on diode laser stacks," Opt. Commun. 471, 126031 (2020). https://doi.org/10.1016/j.optcom.2020.126031
  11. S. Khandekar, G. Sahu, K. Muralidhar, E. Y. Gatapova, O. A. Kabov, R. Hu, X. Luo, and L. Zhao, "Cooling of high-power LEDs by liquid sprays: challenges and prospects," Appl. Therm. Eng. 184, 115640 (2021). https://doi.org/10.1016/j.applthermaleng.2020.115640
  12. X. Liu, M. H. Hu, C. G. Caneau, R. Bhat, and C.-E. Zah, "Thermal management strategies for high power semiconductor pump lasers," IEEE Trans. Compon. Packag. Technol. 29, 268-276 (2006). https://doi.org/10.1109/TCAPT.2006.875878
  13. S. C. Chaparala, F. Xie, C. Caneau, C. E. Zah, and L. C. Hughes, "Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers," IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1975-1982 (2011). https://doi.org/10.1109/TCPMT.2011.2142309
  14. V. Novak, B. Podobnik, J. Mozina, and R. Petkovsek, "Analysis of the thermal management system for a pump laser," Appl. Therm. Eng. 57, 99-106 (2013). https://doi.org/10.1016/j.applthermaleng.2013.03.060
  15. H. Zhu, M. Hao, J. Zhang, W. Ji, X. Lin, J. Zhang, and Y. Ning, "Development and thermal management of 10 kW CW, direct diode laser source," Opt. Laser Technol. 76, 101-105 (2016). https://doi.org/10.1016/j.optlastec.2015.08.001
  16. K. Mehta, Y.-S. Liu, J. L. Wang, H. Jeong, T. Detchprohm, R. D. Dupuis, and P. D. Yoder, "Thermal design considerations for III-N vertical-cavity surface-emitting lasers using electro-opto-thermal numerical simulations," IEEE J. Quantum Electron. 55, 2400308 (2019).
  17. X.-D. Zhang, X.-P. Li, Y.-X. Zhou, J. Yang, and J. Liu, "Vascularized liquid metal cooling for thermal management of kW high power laser diode array," Appl. Therm. Eng. 162, 114212 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114212
  18. Y.-T. Yu, X.-Q. Xiang, X.-Z. Zhou, K. Zhou, G.-W. Xu, X.-L. Zhao, and S.-B. Long, "Device topological thermal management of β -Ga2O3 Schottky barrier diodes," Chinese Phys. B 30, 067302 (2021). https://doi.org/10.1088/1674-1056/abeee2
  19. B.-G. Ji and B.-H. O, "Heat conduction analysis and improvement of a high-power optical semiconductor source using graphene layers," Korean J. Opt. Photon. 26, 168-171 (2015). https://doi.org/10.3807/KJOP.2015.26.3.168
  20. B.-G. Ji, S.-G. Lee, S.-G. Park, and B.-H. O, "Bypass heat sink analysis for a laser diode bar with a top canopy," Curr. Opt. Photon. 1, 113-117 (2017). https://doi.org/10.3807/COPP.2017.1.2.113