Browse > Article
http://dx.doi.org/10.3807/KJOP.2021.32.5.230

Thermal Stress Relief through Introduction of a Microtrench Structure for a High-power-laser-diode Bar  

Jeong, Ji-Hun (Department of Information Communication Engineering, Inha University)
Lee, Dong-Jin (Department of Information Communication Engineering, Inha University)
O, Beom-Hoan (Department of Information Communication Engineering, Inha University)
Publication Information
Korean Journal of Optics and Photonics / v.32, no.5, 2021 , pp. 230-234 More about this Journal
Abstract
Relief of thermal stress has received great attention, to improve the beam quality and stability of high-power laser diodes. In this paper, we investigate a microtrench structure engraved around a laser-diode chip-on-submount (CoS) to relieve the thermal stress on a laser-diode bar (LD-bar), using the SolidWorks® software. First, we systematically analyze the thermal stress on the LD-bar CoS with a metal heat-sink holder, and then derive an optimal design for thermal stress relief according to the change in microtrench depth. The thermal stress of the front part of the LD-bar CoS, which is the main cause of the "smile effect", is reduced to about 1/5 of that without the microtrench structure, while maintaining the thermal resistance.
Keywords
Cross-section of heat flow; Laser diode; Thermal resistance; Thermal stress; Trench structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Zhu, M. Hao, J. Zhang, W. Ji, X. Lin, J. Zhang, and Y. Ning, "Development and thermal management of 10 kW CW, direct diode laser source," Opt. Laser Technol. 76, 101-105 (2016).   DOI
2 K. Mehta, Y.-S. Liu, J. L. Wang, H. Jeong, T. Detchprohm, R. D. Dupuis, and P. D. Yoder, "Thermal design considerations for III-N vertical-cavity surface-emitting lasers using electro-opto-thermal numerical simulations," IEEE J. Quantum Electron. 55, 2400308 (2019).
3 Y.-T. Yu, X.-Q. Xiang, X.-Z. Zhou, K. Zhou, G.-W. Xu, X.-L. Zhao, and S.-B. Long, "Device topological thermal management of β -Ga2O3 Schottky barrier diodes," Chinese Phys. B 30, 067302 (2021).   DOI
4 B.-G. Ji and B.-H. O, "Heat conduction analysis and improvement of a high-power optical semiconductor source using graphene layers," Korean J. Opt. Photon. 26, 168-171 (2015).   DOI
5 P. Wen, D. Li, S. Zhang, J. Liu, L. Zhang, K. Zhou, M. Feng, Z. Li, A. Tian, and H. Yang, "High accuracy thermal resistance measurement in GaN/InGaN laser diodes," Solid-State Electron. 106, 50-53 (2015).   DOI
6 D. Agop-Forna, C. Cretu, C. Topoliceanu, M. Salceanu, D. Vasincu, and N. Forna, "Clinical applications of diode lasers in oral surgery: a review," Romanian J. Oral Rehabil. 13, 265-270 (2021).
7 S. Khandekar, G. Sahu, K. Muralidhar, E. Y. Gatapova, O. A. Kabov, R. Hu, X. Luo, and L. Zhao, "Cooling of high-power LEDs by liquid sprays: challenges and prospects," Appl. Therm. Eng. 184, 115640 (2021).   DOI
8 V. Novak, B. Podobnik, J. Mozina, and R. Petkovsek, "Analysis of the thermal management system for a pump laser," Appl. Therm. Eng. 57, 99-106 (2013).   DOI
9 X.-D. Zhang, X.-P. Li, Y.-X. Zhou, J. Yang, and J. Liu, "Vascularized liquid metal cooling for thermal management of kW high power laser diode array," Appl. Therm. Eng. 162, 114212 (2019).   DOI
10 E. Dabrowska, M. Teodorczyk, L. Lipinska, R. Kozinski, and A. Malag, "Application of graphene oxide for reduction of thermal resistance of high-power laser diodes," Electron. Lett. 49, 1550-1551 (2013).   DOI
11 B.-G. Ji, S.-G. Lee, S.-G. Park, and B.-H. O, "Bypass heat sink analysis for a laser diode bar with a top canopy," Curr. Opt. Photon. 1, 113-117 (2017).   DOI
12 Z. Wu, S. D. You, Q. Du, and Y. Huang, "Influence of smile effect on beam properties of spectrally combined beams based on diode laser stacks," Opt. Commun. 471, 126031 (2020).   DOI
13 Y. Izawa, N. Miyanaga, J. Kawanaka, and K. Yamakawa, "High power lasers and their new applications," J. Opt. Soc. Korea 12, 178-185 (2008).   DOI
14 H. Zhong, T. Duan, H. Lan, M. Zhou, and F. Gao, "Review of low-cost photoacoustic sensing and imaging based on laser diode and light-emitting diode," Sensors 18, 2264 (2018).   DOI
15 M. Xue, N. Yongqiang, Z. Jianwei, Z. Xing, P. Hangyu, Q. Li, and W. Lijun, "Research progress of red semiconductor laser diodes for laser display," Laser Optoelectron. Prog. 56, 180001 (2019).   DOI
16 T. Ozturk and O. Morikawa, "THz applications of multimode laser diodes: a review," Turk. J. Phys. 43, 303-313 (2019).
17 H. Liu, S. Sun, L. Zheng, G. Wang, W. Tian, D. Zhang, H. Han, J. Zhu, and Z. Wei, "Review of laser-diode pumped Ti:sapphire laser," Microw. Opt. Technol. Lett. 63, 2135-2144 (2021).   DOI
18 X. Liu, M. H. Hu, C. G. Caneau, R. Bhat, and C.-E. Zah, "Thermal management strategies for high power semiconductor pump lasers," IEEE Trans. Compon. Packag. Technol. 29, 268-276 (2006).   DOI
19 S. C. Chaparala, F. Xie, C. Caneau, C. E. Zah, and L. C. Hughes, "Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers," IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1975-1982 (2011).   DOI
20 M. Voss, C. Lier, U. Menzel, A. Barwolff, and T. Elsaesser, "Time-resolved emission studies of GaAs/AlGaAs laser diode arrays on different heat sinks," J. Appl. Phys. 79, 1170-1172 (1996).   DOI