DOI QR코드

DOI QR Code

Fire resistance assessment in construction joint of precast fireproof duct slab

프리캐스트 방식 내화풍도슬래브 시공조인트부의 화재저항성능 평가

  • Choi, Soon-Wook (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Tae-Ho (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Chulho (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Se Kwon (Research Institute, HONG G) ;
  • Kim, Tae Kyun (HONG G) ;
  • Chang, Soo-Ho (Construction Industry Promotion Department, Korea Institute of Civil Engineering and Building Technology)
  • 최순욱 (한국건설기술연구원 지반연구본부) ;
  • 강태호 (한국건설기술연구원 지반연구본부) ;
  • 이철호 (한국건설기술연구원 지반연구본부) ;
  • 김세권 ((주)홍지 기술연구소) ;
  • 김태균 ((주)홍지) ;
  • 장수호 (한국건설기술연구원 건설산업진흥본부)
  • Received : 2021.08.24
  • Accepted : 2021.09.13
  • Published : 2021.09.30

Abstract

Duct slabs, which are used to build ventilation facilities in underground spaces with transverse ventilation system, need to secure fire resistance according to longitudinal and heavy vehicle traffic of tunnels. This study measured the temperature change at the construction joint of the precast fireproof duct slab which integrates fire resistance material and duct slab under the RWS fire scenario. As a result, it was confirmed that if there is no reinforcement of the construction joint, damage will occur in concrete inside the construction joint, leading to damage to the fireproofing layer. On the other hand, when one side of the construction joint was reinforced with fireproofing materials, it showed more than three times the fire resistance performance compared to when there was no reinforcement. At this time, cross-sectional losses of concrete and fireproofing layer were shown in blocks without reinforcement, but no damage was seen in the reinforced blocks.

횡류식으로 지하공간의 환기시설을 구축할 때 사용되는 풍도슬래브는 터널의 장대화 및 중차량 통행에 따라 내화성능 확보가 필요하다. 본 연구는 내화재와 슬래브를 일체식으로 제작하는 프리캐스트 내화풍도슬래브를 대상으로, RWS화재시나리오 하에서 내화풍도슬래브를 시공할 때 발생하는 시공조인트부에서의 온도변화를 측정하였다. 그 결과, 시공조인트부의 보강이 없을 경우는 시공조인트부 안쪽의 콘크리트에서 손상이 발생하여 내화재의 손상으로 이어짐을 확인하였다. 반면 시공조인트 내측의 한쪽 면을 내화재로 보강한 경우는 보강이 없을 경우에 비해 3배 이상의 화재저항성능을 보였지만, 보강이 없는 블록에서 콘크리트 및 내화재의 단면손실이 나타났다. 그러나 보강된 블록에서는 손상이 나타나지 않았다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 민간수탁사업 "2020년 지반설계 정수산정 및 분석사업" 중 (주)홍지의 "내화몰탈 일체형 터널 슬래브에 대한 RWS시험"의 지원으로 수행되었습니다.

References

  1. Chae, W.B., Kim, K.R., Seo, S.K. (2011), "Fireproofing mortar mixed with recycled fine aggregate and porous ceramic for tunnel covering material", Proceedings of 2011 Fall Conference of the Korea Concrete Institute, Pyeongchang, pp. 733-734.
  2. Chang, S.H., Choi, S.W., Kwon, J.W., Kim, S.H., Bae, G.J. (2007), "Alteration of mechanical properties of tunnel structural members after a tunnel fire accident", Journal of Korean Tunnelling and Underground Space Association, Vol. 9, No. 2, pp. 157-169.
  3. Choi, S.W., Chang, S.H., Kim, H.Y., Jo, B.H. (2010), "Assessment of structural fire resistance of a fire-proofed immersed tunnel under tunnel fire scenarios", Journal of Korean Tunnelling and Underground Space Association, Vol. 12, No. 6, pp. 429-441.
  4. Choi, S.W., Kang, T.H., Lee, C., Kim, S.K., Kim, T.K., Chang, S.H. (2020), "Fire resistance assessment of precast fireproof duct slab", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 6, pp. 669-680. https://doi.org/10.9711/KTAJ.2020.22.6.669
  5. Clement, F., Focaracci, A. (2011), "Fire protection in tunnels: resquirements, solutions and case histories", Proceedings of the WTC2011, Helsinki, Finland.
  6. Hertz, K.D. (2003), "Limits of spalling of fire-exposed concrete", Fire Safety Journal, Vol. 38, No. 2, pp. 103-116. https://doi.org/10.1016/S0379-7112(02)00051-6
  7. ITA (2004), Guidelines for structural fire resistance for road tunnels, Working Group No. 6 Maintenance and Repair, pp. 2-4~6.
  8. Khoury, G.A., Majorana, C.E., Pesavento, F., Schrefler, B.A. (2002), "Modelling of heated concrete", Magazine of Concrete Research, Vol. 54, No. 2, pp. 77-101. https://doi.org/10.1680/macr.2002.54.2.77
  9. Kodur, V.K.R., Dwaikat, M. (2008), "A numerical model for predicting the fire resistance of reinforced concrete beams", Cement and Concrete Composites, Vol. 30, No. 5, pp. 431-443. https://doi.org/10.1016/j.cemconcomp.2007.08.012
  10. Kwon, K., Shin, H., Kim, H. (2016), "Evaluation of the damage by a fire of the full scale concrete tunnel lining exposed to the high temperature", Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 2, pp. 9-15. https://doi.org/10.9798/KOSHAM.2016.16.2.9
  11. Phan, L.T. (1996), Fire performance of high-strength concrete: a report of the state-of-the-art, NISTIR 5934, National Institute of Standards and Technology, pp. 59-60.
  12. PIARC (1999), Fire and Smoke Control in Road Tunnels, PIARC Committee on Road Tunnels, May, pp. 57-58.
  13. Won, J.P., Jang, C.I., Lee, S.W., Kim, H.Y., Kim, W.Y. (2008), "Spalling and internal temperature distribution of high strength column member with polypropylene fiber volume fractions", Journal of the Korea Concrete Institute, Vol. 20, No. 6, pp. 821-826. https://doi.org/10.4334/JKCI.2008.20.6.821