DOI QR코드

DOI QR Code

A Study on the Circuit Design Method of CNTFET SRAM Considering Carbon Nanotube Density

탄소나노튜브 밀도를 고려한 CNTFET SRAM 디자인 방법에 관한 연구

  • Cho, Geunho (Department of Electronic Engineering, Seokyeong University)
  • Received : 2021.09.02
  • Accepted : 2021.09.27
  • Published : 2021.09.30

Abstract

Although CNTFETs have attracted great attention due to their ability to increase semiconductor device performance by about 13 times, the commercialization of CNTFETs has been challenging because of the immature deposition process of CNTs. To overcome these difficulties, circuit design method considering the known limitations of the CNTFET manufacturing process is receiving increasing attention. SRAM is a major element constituting microprocessor and is regularly and repeatedly positioned in the cache memory; so, it has the advantage that CNTs can be more easily and densely deposited in SRAM than other circuit blocks. In order to take these advantages, this paper presents a circuit design method for SRAM cells considering CNT density and then evaluates its performance improvement using HSPICE simulation. As a result of simulation, it is found that when CNTFET is applied to SRAM, the gate width can be reduced by about 1.7 times and the read speed also can be improved by about 2 times when the CNT density was increased in the same gate width.

CNTFET은 기존 반도체 소자의 성능을 약 13배 향상시킬 수 있어 큰 관심을 받아 왔지만, CNT를 일정하게 배치시키는 공정의 미성숙으로 인해 상용화에 어려움을 겪어 왔다. 이러한 어려움을 극복하기 위해, 그동안 알려진 CNTFET 공정상 한계를 고려한 회로 디자인 방법이 점점 높은 관심을 받고 있다. SRAM은 마이크로프로세서를 구성하는 주요 요소로서 캐시 메모리 안에 규칙적으로 그리고 반복적으로 배치되어 있어, SRAM 안의 CNT는 다른 회로 블록에 비해 보다 쉽게 그리고 고밀도로 배치될 수 있는 장점이 있다. 이러한 장점을 활용하기 위해, 본 논문에서는 CNT 밀도를 고려한 SRAM 셀의 회로 디자인 방법을 소개하고 그 성능 향상 정도를 HSPICE 시뮬레이션으로 검토하고자 한다. 시뮬레이션 결과, SRAM에 CNTFET을 적용할 경우, gate width를 약 1.7배 줄일 수 있음을 발견하였으며, 동일한 gate width에서 CNT 밀도를 높였을 경우, 읽기 속도 또한 약 2배 정도 향상될 수 있음을 알 수 있었다.

Keywords

Acknowledgement

This Research was supported by Seokyeong University in 2021 The EDA tool was supported by the IC Design Education Center(IDEC), Korea

References

  1. Hitoshi. Saito, et al., "Development of 16 Mb NRAM Aiming for High Reliability, Small Cell Area, and High Switching Speed," 2021 IEEE International Memory Workshop (IMW), 2021. DOI: 10.1109/IMW51353.2021.9439617
  2. http://nantero.com/technology/
  3. J. Deng, et al., "A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistor Including Nonidealities and Its Application-Part I: Model of the Intrinsic Channel Region," IEEE Transactions on Electron Devices, vol.54, no.12, pp.3186-3194, 2007. DOI: 10.1109/SISPAD.2006.282864
  4. J. Deng, et al., "A Compact SPICE Model for Carbon-Nanotube Field-Effect Tran sistors Including Nonidealities and Its Application-Part II: Full Device Model and Circuit Performance Benchmarking," IEEE Transactions on Electron Devices, vol.54, no.12, pp.3195-3205, 2007. DOI: 10.1109/TED.2007.909043
  5. Nishant Patil, et al., "Design Methods for Misaligned and Mispositioned Carbon-Nanotube Immune Circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.27, no.10, pp.1725-1736, 2008. https://doi.org/10.1109/TCAD.2008.2003278
  6. G. Hills et al., "Modern microprocessor built from complementary carbon nanotube transistors," Nature, vol.572, no.7771, pp.595-602, 2019. https://doi.org/10.1038/s41586-019-1493-8
  7. L. Liu et al., "Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics," Science, vol.368, no.6493, pp.850-856, 2020. DOI: 10.1126/science.aba5980
  8. CNFET Models. http://nano.stanford.edu/models.php
  9. PTM Models, http://ptm.asu.edu/
  10. G. Cho, et al., "Design and process variation analysis of CNTFET-based ternary memory cells," Integration, vol.54, pp.97-108, 2016. DOI: 10.1016/j.vlsi.2016.02.003
  11. S. Lin, et al., "Design of a CNTFET-based SRAM Cell by Dual-Chirality Selection," IEEE Transactions on Nanotechnology, vol.9, pp. 30-37, 2009. https://doi.org/10.1109/TNANO.2009.2025128
  12. Anantha Chandrakasan, et al., "Design of High-Performance Microprocessor Circuits," WileyIEEE Press, 2000.