Acknowledgement
ORCID ID: 0000-0003-3551-301X
References
- H. W. Lord and Y. Shulman, A Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- A. E. Green and K. E. Lindsay, Thermoelasticity, Journal of Elasticity, 2 (1972), pp. 1-7. https://doi.org/10.1007/BF00045689
- H. M. Youssef, E. Bassiouny, Two-Temperature Generalized Thermopiezoelasticity for One Dimensional Problems-State Space Approach, Computational Methods in Science and Technology, , 14 (2008), 55-64. https://doi.org/10.12921/cmst.2008.14.01.55-64
- H. Tianhu, T. Xiaogeneg and S. Yapeng, State Space Approach to One-Dimensional Shock Problem for A Semi-Infinite Piezoelectric Rod, Int. J. Eng. Sci., 40 (2002), 1081-1097. https://doi.org/10.1016/S0020-7225(02)00005-8
- W. Nowacki, Some General Theorems of Thermo-Piezoelectricity, Journal of Thermal Stresses, 1 (1978), 171-182. https://doi.org/10.1080/01495737808926940
- A. E. Abouelregal, Fractional order generalized thermopiezoelectric semi-infinite medium with temperature dependent properties subjected to a ramp-type heating, Journal of Thermal Stresses, 34(11), (2011), 1139-1155. https://doi.org/10.1080/01495739.2011.606018
- D. S. Chandrasekharaiah, A Generalized Thermoelastic Wave Propagation in a Semi-Infinite Piezoelectric Rod, Acta. Mech., 71 (1983), 39-49. https://doi.org/10.1007/BF01173936
- I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1998.
- K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- Yang X.-J., H. M. Srivastava, and Jose A. T. Machado, A New Fractional Derivative Without Singular Kernel: Application to The Modelling of the Steady Heat Flow, Thermal Science, 20(2) (2016), 753-756. https://doi.org/10.2298/tsci151224222y
- J. Losada and Nieto, Properties of A New Fractional Derivative Without Singular Kernel, Progress in Fractional Differentiation and Applications, 1(2) (2015), 87-92.
- W. E. Raslan, Application of Fractional Order Theory of Thermoelasticity to A 1D Problem for A Spherical Shell, J. Theoretical and Applied Mechanics, vol. 54(1) (2016), 295-304. https://doi.org/10.15632/jtam-pl.54.1.295
- H. H. Sherief, and A. M. El-Latief, Application of Fractional Order Theory of Thermoelasticity to a 1D Problem for A Half-Space, ZAMM, 94 (2014), 509-515. https://doi.org/10.1002/zamm.201200173
- H. H. Sherief, A. M. Abd El-Latief, Application of Fractional Order Theory of Thermoelasticity to a 1D Problem for a Half-space, ZAMM, 2(2013), 1-7.
- H. H. Sherief, A. M. A. El-Sayed, and A. M. Abd El-Latief, Fractional Order Theory of Thermoelasticity, Int. J. Solids Struct., 47 (2010), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
- H. M. Youssef, E. A. Al-Lehaibi, Fractional Order Generalized Thermoelastic Infinite Medium with Cylindrical Cavity Subjected to Harmonically Varying Heat, Engineering, 3 (2011), 32-37. https://doi.org/10.4236/eng.2011.31004
- H. M. Youssef, Fractional Order Generalized Thermoelasticity, Journal of Heat Transfer, 132(6) (2010).
- M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary, Magneto-Thermoelasticity with Two Fractional Order Heat Transfer, J. of the Assoc. of Arab Universities for Basic and Applied Sciences, 19 (2016), 70-79. https://doi.org/10.1016/j.jaubas.2014.06.009
- G. Honig, U. Hirdes, A Method for The Numerical Inversion of the Laplace Transform, Journal of Computational and Applied Mathematics, 10 (1984), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- K. R. Gaikwad, K. P. Ghadle., Quasi-static thermoelastic problem of an infinitely long circular cylinder, Journal of the Korean Society for Industrial and Applied Mathematics, 14 (2010), 141-149. https://doi.org/10.12941/jksiam.2010.14.3.141
- K. R. Gaikwad, K. P. Ghadle, On a certain thermoelastic problem of temperature and thermal stresses in a thick circular plate, Australian Journal of Basic and Applied Sciences, 6 (2012), 34-48.
- K. R. Gaikwad, K. P. Ghadle, Non-homogeneous heat conduction problem and its thermal deflection due to internal heat generation in a thin hollow circular disk, Journal of Thermal stresses, 35(6) (2012), 485-498. https://doi.org/10.1080/01495739.2012.671744
- K. R.Gaikwad., Analysis of thermoelastic deformation of a thin hollow circular disk due to partially distributed heat supply, Journal of Thermal stresses, 36 (3) (2013), 207-224. https://doi.org/10.1080/01495739.2013.765168
- K. R. Gaikwad, K. P. Ghadle, Thermal stresses in a non-homogeneous semi-infinite hollow circular disk due to internal heat generation, International Journal of Advanced Research in Basic and Applied Sciences, 2(1) (2015), 130-133.
- K. R. Gaikwad, Mathematical Modelling of thermoelastic problem in a circular sector disk subject to heat generation, International Journal of Advances in Applied Mathematics and Mechanics, 2(3)(2015), 183-195.
- K. R. Gaikwad, Two-Dimensional study-state temperature distribution of a thin circular plate due to uniform internal energy generation, Cogent Mathematics, 3(1) (2016), 1-10. https://doi.org/10.1080/23311835.2015.1135720
- K. R. Gaikwad, Steady-state heat conduction problem in a thick circular plate and its thermal stresses, International Journal of Pure and Applied Mathematics, 115(2) (2017), 301-310. https://doi.org/10.12732/ijpam.v115i2.8
- K. R. Gaikwad, Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation, International Journal of Dynamical Systems and Differential Equations, 9 (2019), 187-202. https://doi.org/10.1504/IJDSDE.2019.100571
- K. R. Gaikwad, S. G. Khavale, Time Fractional Heat Conduction Problem in a Thin Hollow Circular Disk and Its Thermal Deflection, Easy Chair, 1672 (2019).
- K. R. Gaikwad, Y. U. Naner, Transient Thermoelastic Stress Analysis of A A Thin Circular Plate Due to Uniform Internal Heat Generation, Journal of the Korean Society for Industrial and Applied Mathematics, 24(3) (2020), 293-303. https://doi.org/10.12941/JKSIAM.2020.24.293
- S. G. Khavale, K. R. Gaikwad, Generalized theory of magneto-thermo-viscoelastic Spherical cavity problem under Fractional order derivative: State Space Approach, Advances in Mathematics:Scientific Journal, 9 (2020), 9769-9780, 2020. https://doi.org/10.37418/amsj.9.11.86
- K. R. Gaikwad, Y. U. Naner, Analysis Of Transient Thermoelastic Temperature Distribution Of A Thin Circular Plate And Its Thermal Deflection Under Uniform Heat Generation, Journal of thermal stress, 44(1) (2021), 75-85. https://doi.org/10.1080/01495739.2020.1828009
- K. R. Gaikwad, Y. U. Naner, Green's function approach to Thermal Deflection of a thin hollow circular disk under axisymmetric heat source, Journal of the Korean Society for Industrial and Applied Mathematics, 25(1) (2021), 1-15. https://doi.org/10.12941/JKSIAM.2021.25.001
- K. R. Gaikwad, Y. U. Naner, GreenS Function Approach To Transient Thermoelastic Deformation of a Thin Hollow Circular Disk Under Axisymmetric Heat Source, JP Journal of Heat and Mass Transfer, 22(2) (2021), 245-257. https://doi.org/10.17654/HM022020245
- E. Bassiouny and H. M. Youssef, Two-temperature Generalized Thermopiezoelasticity of Finite Rod Subjected to Different Types of Thermal Loading, Journal of Thermal Stresses, 31 (2008), 1-13. https://doi.org/10.1080/01495730701737803
- M. Caputo, et.al., A New Definition of Fractional Derivative Without Singular Kernel, Progress in Fractional Differentiation and Applications, 1(2) (2015), 73-85.