DOI QR코드

DOI QR Code

Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process

  • Phimmavong, Kongsy (Department of Materials Engineering, Graduate School of PaiChai University) ;
  • Hong, Seok-Hyoung (Department of Materials Engineering, Graduate School of PaiChai University) ;
  • Song, Jeong-Hwan (Department of Materials Science and Engineering, PaiChai University)
  • Received : 2021.08.05
  • Accepted : 2021.09.01
  • Published : 2021.09.27

Abstract

ZnO particles are successfully synthesized at 150 ℃ for 30 min using zinc acetate as the Zn source and 1,4-butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH- amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH- ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07050432).

References

  1. A. Moezzi, A. M. McDonagh and M. B. Cortie, Chem. Eng. J., 185-186, 1 (2012). https://doi.org/10.1016/j.cej.2012.01.076
  2. Z. L. Wang, J. Phys.: Condens. Matter, 16, R829 (2004). https://doi.org/10.1088/0953-8984/16/25/R01
  3. K.-R. Agnieszka and T. Jesionowski, Materials, 7, 2833 (2014). https://doi.org/10.3390/ma7042833
  4. J. Wang, J. S. Lee, D. Kim and L. Zhu, ACS Appl. Mater. Interfaces, 9, 39971 (2017). https://doi.org/10.1021/acsami.7b11219
  5. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  6. Z. Y. Fan and J. G. Lu, Appl. Phys. Lett., 86, 032111 (2005). https://doi.org/10.1063/1.1851621
  7. X. W. Li, P. Sun, T. L. Yang, J. Zhao, Z. Wang, W. Wang, Y. Liu, G. Lu and Y. Du, CrystEngComm, 15, 2949 (2013). https://doi.org/10.1039/c2ce26539g
  8. M. L. M. Napi, S. M. Sultan, R. Ismail, K. W. How and M. K. Ahmad, Materials, 12, 2985 (2019). https://doi.org/10.3390/ma12182985
  9. Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai and Y. F. Zhu, Appl. Catal., B, 138-139, 26 (2013). https://doi.org/10.1016/j.apcatb.2013.02.011
  10. L. Wei, X. B Zhang and Z. Zuoya, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 25, 608 (2007). https://doi.org/10.1116/1.2711818
  11. V. Kumar, N. Singh, V. Kumar, L. P. Purohit, A. Kapoor, O. M. Ntwaeaborwa and H. C. Swart, J. Appl. Phys., 114, 134506 (2013). https://doi.org/10.1063/1.4824363
  12. Q. F. Zhou, C. Sharp, J. M. Cannata, K. K. Shung, G. H. Feng and E. S. Kim, Appl. Phys. Lett., 90, 113502 (2007). https://doi.org/10.1063/1.2712813
  13. D. Panda and T. Y. Tseng, J. Mater. Sci., 48, 6849 (2013). https://doi.org/10.1007/s10853-013-7541-0
  14. Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol., 5, 1561 (2005). https://doi.org/10.1166/jnn.2005.182
  15. Y. B. Hahn, Korean J. Chem. Eng., 28, 1797 (2011). https://doi.org/10.1007/s11814-011-0213-3
  16. J. Theerthagiri, S. Salla, R. A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan and H.-S. Kim, Nanotechnology, 30, 392001 (2019). https://doi.org/10.1088/1361-6528/ab268a
  17. M. A. Borysiewicz, Crystals, 9, 505 (2019). https://doi.org/10.3390/cryst9100505
  18. J. Wojnarowicz, T. Chudoba and W. Lojkowski, Nanomaterials, 10, 1086 (2020). https://doi.org/10.3390/nano10061086
  19. B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002). https://doi.org/10.1063/1.1495878
  20. J. J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  21. J. Lee, A. J. Easteal, U. Pal and U. Bhattacharyya, Curr. Appl. Phys., 4, 792 (2009).
  22. M. A. Mousa, W. A. A. Bayoumy and M. Khairy, Mater. Res. Bull., 48, 4576 (2013). https://doi.org/10.1016/j.materresbull.2013.07.050
  23. D. Raoufi, Renew. Energ., 50, 932 (2013). https://doi.org/10.1016/j.renene.2012.08.076
  24. Y. Fang, Z. Li, S. Xu, D. Han and D. Lu, J. Alloys Compd., 575, 359 (2013). https://doi.org/10.1016/j.jallcom.2013.05.183
  25. T. Ipeksac, F. Kaya and C. Kaya, Mater. Lett., 100, 11 (2013). https://doi.org/10.1016/j.matlet.2013.02.099
  26. J. H. Ryu, H. S. Kil, J. H. Song, D. Y. Lim and S. B. Cho, Powder Technol., 221, 228 (2012). https://doi.org/10.1016/j.powtec.2012.01.006
  27. K. Phimmavong, J. H. Song, S. B. Cho and D. Y. Lim, J. Korean Ceram. Soc., 54, 211 (2017). https://doi.org/10.4191/kcers.2017.54.3.03
  28. M. T. Thein, S. Y. Pung, A. Aziz and M. Itoh, J. Exp. Nanosci., 10, 1068 (2015). https://doi.org/10.1080/17458080.2014.953609
  29. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., p.167-171, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA (2001).
  30. S. Nilavazhagan, D. Anbuselvan, A. Santhanam and N. Chidhambaram, Appl. Phys. A: Mater. Sci. Process., 126, 279 (2020). https://doi.org/10.1007/s00339-020-3462-3
  31. W.-J. Li, E.-W. Shi, W.-Z. Zhong and Z.-W. Yin, J. Cryst. Growth, 203, 186 (1999). https://doi.org/10.1016/S0022-0248(99)00076-7
  32. C. X. Xu, X. W. Sun, Z. L. Dong and M. B. Yu, Appl. Phys. Lett., 85, 3878 (2004). https://doi.org/10.1063/1.1811380
  33. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckkenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi and H. Xu, Nat. Mater., 2, 821 (2003) https://doi.org/10.1038/nmat1014
  34. K. Vanheusden, W. L. Warren, C. H. Seager, D. K. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys., 79, 7983 (1996). https://doi.org/10.1063/1.362349
  35. Y. Peng, Y. Wang, Q. G. Chen, Q. Zhu and A. W. Xu, CrystEngComm, 16, 7906 (2014). https://doi.org/10.1039/C4CE00695J