DOI QR코드

DOI QR Code

Anti-inflammatory activity of indigenous Tuber himalayense in Korea

자생 Tuber himalayense 자실체 추출물의 항염증 활성

  • Kim, Minkyeong (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Hong, Hyehyun (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Kim, Jung-Hwan (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Kim, Seung-Young (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Kim, Changmu (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
  • 김민경 (국립생물자원관 미생물자원과) ;
  • 홍혜현 (선문대학교 제약생명공학과) ;
  • 김정환 (선문대학교 제약생명공학과) ;
  • 김승영 (선문대학교 제약생명공학과) ;
  • 김창무 (국립생물자원관 유용자원분석과)
  • Received : 2021.08.27
  • Accepted : 2021.09.06
  • Published : 2021.09.30

Abstract

In this study, the anti-inflammatory activity of an extract of the fruiting body of the Tuber himalayense (TH) truffle collected from oak growing areas in Korea was investigated. The extract was not cytotoxic at concentrations below 100 ㎍/mL in an experiment evaluating inflammation inhibitory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production was inhibited by the extract in a concentration-dependent manner. Western blot assay results indicated that the anti-inflammatory activity of TH extract was likely caused by the reduced production of NO and PGE2 via suppression of induced NO synthase and cyclooxygenase-2 gene expression. In addition, TH extract effectively inhibited the production of interleukin (IL)-1β and IL-6 by macrophages. Thus, TH extract effectively inhibits the overexpression of various inflammatory mediators and could be valuable in formulating anti-inflammatory foods and medicines that target these components.

본 연구는 국내 참나무 생육지에서 채집된 송로버섯의 일종인 T. himalayense 자실체 추출물(TH)의 항염증 활성을 확인하였다. LPS로 유도된 RAW 264.7 대식세포를 대상으로 한 염증 억제 실험에서 TH는 100 ㎍/ml 이하의 농도에서 세포독성을 보이지 않았으며 LPS에 의해 증가된 NO와 PGE2의 생성을 농도 의존적으로 억제하였다. Western blot 분석 결과로 볼 때, TH의 항염증 활성은 iNOS와 COX-2 유전자의 발현억제에 의해 NO와 PGE2의 생성이 감소된 것으로부터 유발된 것임을 입증한다. 또한, TH가 대식세포에 의해 생산 및 분비되는 cytokine IL-1β와 IL-6의 생성을 효과적으로 저해함을 확인하였다. T. himalayense는 다양한 염증 매개체들의 과발현을 효과적으로 억제하며, 이를 표적으로 하는 항염증 관련 식품 및 의약품에 다양하게 활용 될 수 있을 것으로 기대된다. 추후 염증 예방 물질로 적용 될 수 있는 가능성을 높이기 위하여 염증성 작용 기전에 대한 자세한 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 환경부 국립생물자원관의 지원을 받은 기관 연구과제(NIBR202102107)에 의하여 수행된 연구결과의 일부로 이에 감사드립니다.

References

  1. Bae GS, Jo BY, Kim MS, Park KC, Koo BS, Seo SW, Kim SG, Yun SW, Jung WS, Ham YW, Song HJ, et al. 2009. Anti-inflammatory effects of Sophora japonica aqueous extract. Korean J Orient Physiol Pathol 23: 1392-1398.
  2. Beara IN, Lesjak MM, Cetojevic-Simin DD, Marjanovic ZS, Ristic JD, Mrkonjic ZO, Mimica-Dukic NM. 2014. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles. Food Chem 165: 460-466. https://doi.org/10.1016/j.foodchem.2014.05.116
  3. Benucci GM, Gogan Csorbai A, Baciarelli Falini L, Bencivenga M, Di Massimo G, Donnini D. 2012. Mycorrhization of Quercus robur L., Quercus cerris L. and Corylus avellana L. seedlings with Tuber macrosporum Vittad. Mycorrhiza 22(8): 639-646. https://doi.org/10.1007/s00572-012-0441-3
  4. Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cazares E, et al. 2013. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8(1): e52765. https://doi.org/10.1371/journal.pone.0052765
  5. Bonito GM, Smith ME. 2016. General systematic position of the truffles: evolutionary theories. In: Zambonelli A, Iotti M, Murat C (eds). True Truffle (Tuber spp.) in the World-Soil Ecology, Systematics and Biochemistry. Soil Biology. Springer, Cham. Vol 47: 3-18.
  6. Denizot F, Lang R. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2): 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
  7. Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol Ecol 2(2): 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  8. Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4): 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  9. Guo T, Wei L, Sun J, Hou CL, Fan L. 2011. Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chem 127(4): 1634-1640. https://doi.org/10.1016/j.foodchem.2011.02.030
  10. Han MH, Lee MH, Hong SH, Choi YH, Moon JS, Song MK, Kim MJ, Shin SJ, Hwang HJ. 2014. Comparison of anti-inflammatory activities among ethanol extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus, and their mixtures in RAW 264.7 murine macrophages. Korean J Life Sci 24(3): 329-335. https://doi.org/10.5352/JLS.2014.24.3.329
  11. Jung SH, Kim SJ, Jun BG, Lee KT, Hong SP, Oh MS, Jang DS, Choi JH. 2013. α-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NFκB signalling in RAW 264.7 cells. J Ethnopharmacol 147(1): 208-214. https://doi.org/10.1016/j.jep.2013.02.034
  12. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  13. Kim DH, Hwang EY, Son JH. 2013. Anti-inflammatory activity of Carthamus tinctorious seed extracts in Raw 264.7 cells. J Life Sci 23(1): 55-62. https://doi.org/10.5352/JLS.2013.23.1.55
  14. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2): 111-120. https://doi.org/10.1007/BF01731581
  15. Kong CS. 2014. Anti-inflammatory activity of the solvent-partitioned fractions from Spergularia marina in LPS-stimulated RAW 264.7 cells. Prev Nutr Food Sci 19(4): 261-267. https://doi.org/10.3746/pnf.2014.19.4.261
  16. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054
  17. Laskin DL, Pendino KJ. 1995. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35: 655-677. https://doi.org/10.1146/annurev.pa.35.040195.003255
  18. Lee SY, Hyun JM, Kim SS, Park SM, Park KJ, Choi YH, Kim SH, Yu SN, Ahn SC. 2014. Anti-inflammatory effect of Citrus unshiu peels fermented with Aspergillus niger. J Life Sci 24(7): 750-756. https://doi.org/10.5352/JLS.2014.24.7.750
  19. Park H, Gwon JH, Lee JC, Kim HS, Oh DS, Eom AH. 2020. Report on Tuber huidongense, a truffle species previously unrecorded in Korea. Korean J Mycol 48(4): 505-510. https://doi.org/10.4489/KJM.20200049
  20. Park H, Gwon JH, Lee JC, Kim HS, Oh DS, Eom AH. 2021. Morphological and phylogenetic characteristics of Tuber himalayense collected from rhizosphere of Quercus dentata in Korea. Korean J Mycol 49(1): 101-108. https://doi.org/10.4489/KJM.20210010
  21. Patel S, Rauf A, Khan H, Khalid S, Mubarak MS. 2017. Potential health benefits of natural products derived from truffles: a review. Trends Food Sci Technol 70: 1-8. https://doi.org/10.1016/j.tifs.2017.09.009
  22. Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98(6): 625-634. https://doi.org/10.1016/s0953-7562(09)80409-7
  23. Shin KS, Park JS, Yoshimi S. 1995. Note on Tuber aestivum subsp. uncinatum newly recorded in Korea. Kor J Mycol 23(1): 10-13.
  24. Trappe JM. 1979. The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon 9: 297-340.
  25. Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8): 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  26. White TJ, Bruns T, Lee S, Taylor JL. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. PCR Protocols. Academic Press: 315-322.
  27. Wynn TA, Vannella KM. 2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3): 450-462. https://doi.org/10.1016/j.immuni.2016.02.015
  28. Xiao DR, Liu RS, He L, Li HM, Tang YL, Liang XH, Chen T, Tang YJ. 2015. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation. Sci Rep 5: 17120. https://doi.org/10.1038/srep17120
  29. Zhao W, Wang XH, Li HM, Wang SH, Chen T, Yuan ZP, Tang YJ. 2014. Isolation and characterization of polysaccharides with the antitumor activity from Tuber fruiting bodies and fermentation system. Appl Microbiol Biotechnol 98(5): 1991-2002. https://doi.org/10.1007/s00253-013-5379-7