DOI QR코드

DOI QR Code

Review on the Recent Membrane Technologies for Pressure Retarded Osmosis

압력지연삼투를 위한 최근 분리막 기술에 관한 총설

  • Jeon, Sungsu (Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 전성수 (연세대학교 언더우드학부 융합과학공학부) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.08.19
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

Solutions to water pollution, global warming, and climate change have been currently discussed. Pressure retarded osmosis (PRO) using a difference in salt concentration between two fluids is proposed to meet the demand for clean water and produce eco-friendly energy. Although PRO has been researched continuously, it has not been commercialized yet due to limitations such as lack of technology and the high price of membranes. Meanwhile, the membrane is one of the most significant parts of the PRO engine and salinity gradient power (SGP) technology. Research continues to technologically develop graphene oxide membranes and nanocomposite membranes used in salinity gradient power generation. Studies on efficient membranes, solvents, and solutes are active to enable high energy efficiency of the osmotic heat engine even at low temperatures of waste. Studies have been conducted on reducing internal concentration polarization and increasing power density by using membranes with balanced permeability and selectivity. In this review, dealing with these studies, we discuss the types of PRO membranes, theoretical modeling of technologies through efficient membranes, and other technologies to develop the process efficiency.

물 오염, 지구 온난화, 기후 변화를 해결하기 위한 해결책이 시급한 상황에서, 담수의 수요를 충당하고 친환경 에너지를 생산하기 위한 방법으로 염도차를 이용한 압력지연삼투공정이 제시되고 있다. 압력지연삼투공정에 대한 꾸준한 연구에도 불구하고 최근 기술의 부족과 비싼 멤브레인의 가격 등의 한계로 인해 상용화가 되지 않고 있다. 한편 멤브레인은 압력지연삼투공정과 염도차 발전 기술에 가장 중요한 구성품이다. 염도차 발전 기술에 사용되는 산화그래핀 멤브레인과 나노복합체 멤브레인의 기술 발전 연구가 지속되고 있다. 특히 낮은 온도의 폐기물 온도에서도 높은 에너지 효율 발전이 가능하도록 효율이 높은 멤브레인과 용매 및 용질에 대한 연구가 활발하다. 높은 투과도와 분리도를 가진 멤브레인, 특히 산화그래핀 멤브레인을 사용함으로써 농도 분극을 줄이고 전력 밀도를 높이는 연구들도 진행 중이다. 본 총설에서는 압력지연삼투 멤브레인과 이를 통한 이론적 모델링, 그 외 기술을 통해 공정의 효율을 발전시키는 방법에 대해 논의한다.

Keywords

References

  1. R. R. Gonzales, A. Abdel-Wahab, S. Adham, D. S. Han, S. Phuntsho, W. Suwaileh, N. Hilal, H. K. Shon, "Salinity gradient energy generation by pressure retarded osmosis: A review", Desalination, 500, 114841 (2021). https://doi.org/10.1016/j.desal.2020.114841
  2. B. Anand, R. Shankar, S. Murugavelh, W. Rivera, K. Midhun Prasad, R. Nagarajan, "A review on solar photovoltaic thermal integrated desalination technologies", Renew. Sustain. Energy Rev., 141, 110787 (2021). https://doi.org/10.1016/j.rser.2021.110787
  3. M. Qasim, N. A. Darwish, S. Sarp, N. Hilal, "Water desalination by forward (direct) osmosis phenomenon: A comprehensive review", Desalination, 374, 47 (2015). https://doi.org/10.1016/j.desal.2015.07.016
  4. A. Yadav, P. K. Labhasetwar, V. K. Shahi, "Membrane distillation using low-grade energy for desalination: A review", J. Environ. Chem. Eng., 9, 105818 (2021). https://doi.org/10.1016/j.jece.2021.105818
  5. A. Ali, R. A. Tufa, F. Macedonio, E. Curcio, E. Drioli, "Membrane technology in renewable-energy-driven desalination", Renew. Sustain. Energy Rev., 81, 1 (2018). https://doi.org/10.1016/j.rser.2017.07.047
  6. J. Kim, K. H Lee, J. L. Lim, "Comprehensive Analysis of Major Factors Associated with the Performance of Reverse Osmosis Desalination Plant for Energy-saving", J. Membr. Sci., 29, 314 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.314
  7. J. Kim, H. J. Park, K. H. Lee, B. Kwon, S. Kwon, J. L. Lim, "Impact Analysis of Water Blending to Reverse Osmosis Desalination Process", J. Membr. Sci., 30, 190 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.190
  8. J. Y. Lee, J. W. Rhim, "Identification of Fouling Phenomena and Establishment for Optimized Removal Process of Alginic Acid Sodium Salt Through Capacitive Deionization", J. Membr. Sci., 30, 342 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.342
  9. N. AlZainati, H. Saleem, A. Altaee, S. J. Zaidi, M. Mohsen, A. Hawari, G.J. Millar, "Pressure retarded osmosis: Advancement, challenges and potential", J. Water Process Eng., 40, 101950 (2021). https://doi.org/10.1016/j.jwpe.2021.101950
  10. M. Tawalbeh, A. Al-Othman, N. Abdelwahab, A. H. Alami, A. G. Olabi, "Recent developments in pressure retarded osmosis for desalination and power generation", Renew. Sustain. Energy Rev., 138, 110492 (2021). https://doi.org/10.1016/j.rser.2020.110492
  11. N. Bajraktari, C. Helix-Nielsen, H. T. Madsen, "Pressure retarded osmosis from hypersaline sources-A review", Desalination, 413, 65 (2017). https://doi.org/10.1016/j.desal.2017.02.017
  12. S. Adham, A. Hussain, J. Minier-Matar, A. Janson, R. Sharma, "Membrane applications and opportunities for water management in the oil & gas industry", Desalination, 440, 2 (2018).
  13. N. Ghaffour, S. Soukane, J. G. Lee, Y. Kim, A. Alpatova, "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review", Appl. Energy, 254, 113698 (2019). https://doi.org/10.1016/j.apenergy.2019.113698
  14. H. K. Lee, H. T. T. Dao, W. Kang, Y. N. Kwon, "Review on Changes in Surface Properties and Performance of Polyamide Membranes when Exposed to Acidic Solutions", J. Membr. Sci., 30, 283 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.283
  15. X. Tong, X. Wang, S. Liu, H. Gao, R. Hao, Y. Chen, "Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane", ACS Omega, 3, 15501 (2018). https://doi.org/10.1021/acsomega.8b02101
  16. X. Tong, X. Wang, S. Liu, H. Gao, C. Xu, J. Crittenden, Y. Chen, "A freestanding graphene oxide membrane for efficiently harvesting salinity gradient power", Carbon, 138, 410 (2018). https://doi.org/10.1016/j.carbon.2018.07.064
  17. C. Chen, D. Liu, L. He, S. Qin, J. Wang, J. M. Razal, N. A. Kotov, W. Lei, "Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting", Joule, 4, 247 (2020). https://doi.org/10.1016/j.joule.2019.11.010
  18. N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, M. Elimelech, "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45, 4360 (2011). https://doi.org/10.1021/es104325z
  19. X. Tong, S. Liu, J. Yan, O. A. Broesicke, Y. Chen, J. Crittenden, "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration", Appl. Energy, 259, 114192 (2020). https://doi.org/10.1016/j.apenergy.2019.114192
  20. H. Gong, D. D. Anastasio, K. Wang, J. R. McCutcheon, "Finding better draw solutes for osmotic heat engines: Understanding transport of ions during pressure retarded osmosis", Desalination, 421, 32 (2017). https://doi.org/10.1016/j.desal.2017.03.030
  21. R. L. McGinnis, J. R. McCutcheon, M. Elimelech, "A novel ammonia-carbon dioxide osmotic heat engine for power generation", J. Membr. Sci., 305, 13 (2007). https://doi.org/10.1016/j.memsci.2007.08.027
  22. A. O. Sharif, A. A. Merdaw, M. Aryafar, P. Nicoll, "Theoretical and experimental investigations of the potential of osmotic energy for power production", Membranes, 4, 447 (2014). https://doi.org/10.3390/membranes4030447
  23. X. Luo, X. Cao, Y. Mo, K. Xiao, X. Zhang, P. Liang, X. Huang, "Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat", Electrochem. Commun., 19, 25 (2012). https://doi.org/10.1016/j.elecom.2012.03.004
  24. A. P. Straub, N. Y. Yip, S. Lin, J. Lee, M. Elimelech, "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes", Nat. Energy, 1, 16090 (2016). https://doi.org/10.1038/nenergy.2016.90