DOI QR코드

DOI QR Code

자유 라디칼 중합법을 활용한 CO2 기체분리용 PVA 기반 가지형 공중합체 복합막

PVA-based Graft Copolymer Composite Membrane Synthesized by Free-Radical Polymerization for CO2 Gas Separation

  • 박민수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합과)
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 투고 : 2021.08.17
  • 심사 : 2021.08.24
  • 발행 : 2021.08.31

초록

지구 온난화 이슈에서 가장 고질적인 문제 중 하나는 온실가스의 배출이다. 다양한 온실 가스 중 가장 높은 비중을 차지하는 이산화탄소(CO2)는 이를 분리하기 위해 연구자들이 지속적으로 연구를 진행해오고 있다. 이러한 관점에서 본 연구에서는 이산화탄소 기체를 분리하기 위해 poly(vinyl alcohol) (PVA) 기반 공중합체를 제조하여 기체 분리막에 활용했다. 공중합체는 자유 라디칼 중합법을 활용했으며, 곁사슬을 위한 단량체로 아크릴산(acrylic acid)를 사용하여 PVA-g-PAA(VAA) 그래프트 공중합체를 제조했다. 본 공중합체를 이산화탄소 기체분리막에 적용한 사례는 최초이며, 폴리설폰 지지체에 복합막 형태로 제조했다. 공중합체 합성 결과는 FT-IR을 통해, 합성한 공중합체 의 거동은 TEM과 DSC, TGA를 통해 분석하였다. AA 그래프팅을 통해 공중합체는 나노 구조를 형성하며, PVA의 결정화도를 급격하게 감소시켜 이산화탄소의 용해도를 증가시켰고, 이는 이산화탄소 기체 분리 성능을 향상시켰다. 이를 통해 이산화탄소 분리막 분야에 용액-확산 및 그래프팅 방법이라는 새로운 접근법을 제시하였다.

One of the chronic problems in the issue of global warming is the emission of greenhouse gases. Carbon dioxide (CO2), which accounts for the highest proportion of various greenhouse gases, has been continuously researched by humans to separate it. From this point of view, a poly(vinyl alcohol) (PVA)-based copolymer with acrylic acid monomer was utilized in a gas separation membrane in this study. We employed a free radical polymerization to fabricate PVA-g-PAA (VAA) graft copolymer. It was utilized in the form of a composite membrane on a polysulfone substrate. The proper amount of acrylic acid reduced the crystallinity of PVA and increased CO2 solubility in separation membranes. In this perspective, we suggest the novel approach in CO2 separation membrane area by grafting and solution-diffusion.

키워드

참고문헌

  1. C. Mitchell, "THE ENGLAND AND WALES NON-FOSSIL FUEL OBLIGATION: History and Lessons", Annu. Rev. Energ. Environ. 25, 285 (2000). https://doi.org/10.1146/annurev.energy.25.1.285
  2. M. Wik and I. Renberg, "Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion", J. Paleolimn. 15, 193 (1996). https://doi.org/10.1007/BF00213040
  3. K.-H. Erb, S. Gingrich, F. Krausmann and H. Haberl, "Industrialization, Fossil Fuels, and the Transformation of Land Use", J. Ind. Ecol. 12, 686 (2008). https://doi.org/10.1111/j.1530-9290.2008.00076.x
  4. R. J. Andres, D. J. Fielding, G. Marland, T. A. Boden, N. Kumar and A. T. Kearney, "Carbon dioxide emissions from fossil-fuel use, 1751-1950", Tellus B, 51, 759 (1999). https://doi.org/10.3402/tellusb.v51i4.16483
  5. R. Heede, "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854-2010", Clim. Change, 122, 229 (2014). https://doi.org/10.1007/s10584-013-0986-y
  6. N. Apergis and J. E. Payne, "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model", Energy Econ. 42, 226 (2014). https://doi.org/10.1016/j.eneco.2014.01.003
  7. S. C. Moser, "Communicating climate change: history, challenges, process and future directions", WIREs Clim. Change, 1, 31 (2010). https://doi.org/10.1002/wcc.11
  8. W. P. Nel and C. J. Cooper, "Implications of fossil fuel constraints on economic growth and global warming", Energy Policy, 37, 166 (2009). https://doi.org/10.1016/j.enpol.2008.08.013
  9. M. Lazarus and H. van Asselt, "Fossil fuel supply and climate policy: exploring the road less taken", Clim. Change, 150, 1 (2018). https://doi.org/10.1007/s10584-018-2266-3
  10. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, "Carbon Dioxide Capture in Metal -Organic Frameworks", Chem. Rev. 112, 724 (2012). https://doi.org/10.1021/cr2003272
  11. M. D. Burkart, N. Hazari, C. L. Tway and E. L. Zeitler, "Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization", ACS Catal. 9, 7937 (2019). https://doi.org/10.1021/acscatal.9b02113
  12. P. Pullumbi, F. Brandani and S. Brandani, "Gas separation by adsorption: technological drivers and opportunities for improvement", Curr. Opin. Chem. Eng. 24, 131 (2019). https://doi.org/10.1016/j.coche.2019.04.008
  13. P. Li and F. Handan Tezel, "Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite", Micropor. Mesopor. Mat. 98, 94 (2007). https://doi.org/10.1016/j.micromeso.2006.08.016
  14. M. C. Garcia-Payo, C. A. Rivier, I. W. Marison and U. von Stockar, "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions", J. Membr. Sci. 198, 197 (2002). https://doi.org/10.1016/S0376-7388(01)00649-4
  15. C. A. Rivier, M. C. Garcia-Payo, I. W. Marison and U. von Stockar, "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: I. Theory and simulations", J. Membr. Sci. 201, 1 (2002). https://doi.org/10.1016/S0376-7388(01)00648-2
  16. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  17. H. A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D. F. Mohshim and A. Mushtaq, "Recent Applications of Polymer Blends in Gas Separation Membranes", Chem. Eng. Technol. 36, 1838 (2013). https://doi.org/10.1002/ceat.201300342
  18. T.-H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones and S. Nair, "A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals", Angew. Chem.-Int. Edit. 49, 9863 (2010). https://doi.org/10.1002/anie.201006141
  19. D. De Meis, M. Richetta and E. Serra, "Microporous Inorganic Membranes for Gas Separation and Purification", Interceram-Int. Ceram. Rev. 67, 16 (2018). https://doi.org/10.1007/s42411-018-0032-1
  20. H. Cong, M. Radosz, B. F. Towler and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Techn. 55, 281 (2007). https://doi.org/10.1016/j.seppur.2006.12.017
  21. A. B. Shelekhin, E. J. Grosgogeat and S.-T. Hwang, "Gas separation properties of a new polymer/inorganic composite membrane", J. Membr. Sci. 66, 129 (1992). https://doi.org/10.1016/0376-7388(92)87003-G
  22. P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Techn. 81, 243 (2011). https://doi.org/10.1016/j.seppur.2011.07.042
  23. S. Tul Muntha, A. Kausar and M. Siddiq, "Progress in Applications of Polymer-Based Membranes in Gas Separation Technology", Polym.-Plast. Technol. Eng. 55, 1282 (2016). https://doi.org/10.1080/03602559.2016.1163592
  24. Y. Wang, J. Wang, X. Zhang, J. Li and L. Li, "Polyvinylamine/ZIF-8-decorated metakaolin composite membranes for CO2/N2 separation", Sep. Purif. Techn. 270, 118800 (2021). https://doi.org/10.1016/j.seppur.2021.118800
  25. Q. Wang, F. Huang, C. J. Cornelius and Y. Fan, "Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations", J. Membr. Sci. 621, 118785 (2021). https://doi.org/10.1016/j.memsci.2020.118785
  26. W. Jiao, Y. Ban, Z. Shi, X. Jiang, Y. Li and W. Yang, "Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole", J. Membr. Sci. 533, 1 (2017). https://doi.org/10.1016/j.memsci.2017.03.022
  27. X. Li, K. Li, S. Tao, H. Ma, R. Xu, B. Wang, P. Wang and Z. Tian, "Ionothermal synthesis of LTA-type aluminophosphate molecular sieve membranes with gas separation performance", Micropor. Mesopor. Mat. 228, 45 (2016). https://doi.org/10.1016/j.micromeso.2016.03.026
  28. W. Guo, S. M. Mahurin, S. Wang, H. M. Meyer, H. Luo, X. Hu, D.-e. Jiang and S. Dai, "Ion-gated carbon molecular sieve gas separation membranes", J. Membr. Sci. 604, 118013 (2020). https://doi.org/10.1016/j.memsci.2020.118013
  29. D. E. Gottschlich, D. L. Roberts and J. D. Way, "A theoretical comparison of facilitated transport and solution-diffusion membrane modules for gas separation", Gas Sep. Purif. 2, 65 (1988). https://doi.org/10.1016/0950-4214(88)80014-8
  30. A. I. Akhmetshina, N. R. Yanbikov, A. A. Atlaskin, M. M. Trubyanov, A. Mechergui, K. V. Otvagina, E. N. Razov, A. E. Mochalova and I. V. Vorotyntsev, "Acidic Gases Separation from Gas Mixtures on the Supported Ionic Liquid Membranes Providing the Facilitated and Solution-Diffusion Transport Mechanisms", Membranes, 9, 9 (2019). https://doi.org/10.3390/membranes9010009
  31. R. Bounaceur, E. Berger, M. Pfister, A. A. Ramirez Santos and E. Favre, "Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool", J. Membr. Sci. 523, 77 (2017). https://doi.org/10.1016/j.memsci.2016.09.011
  32. M. Washim Uddin and M. -B. Hagg, "Effect of monoethylene glycol and triethylene glycol contamination on CO2/CH4 separation of a facilitated transport membrane for natural gas sweetening", J. Membr. Sci. 423-424, 150 (2012). https://doi.org/10.1016/j.memsci.2012.08.011
  33. H. Zhou, J. Xie and S. Ban, "Insights into the ultrahigh gas separation efficiency of Lithium doped carbon nanotube membrane using carrier-facilitated transport mechanism", J. Membr. Sci. 493, 599 (2015). https://doi.org/10.1016/j.memsci.2015.07.029
  34. D. Wu, C. Sun, P. K. Dutta and W. S. Winston Ho, "SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas", J. Membr. Sci. 534, 33 (2017). https://doi.org/10.1016/j.memsci.2017.04.003