DOI QR코드

DOI QR Code

Estimation of Shear-Wave Velocities of Layered Half-Space Using Full Waveform Inversion with Genetic Algorithm

유전 알고리즘을 활용한 완전파형역산 기법의 층상 반무한 지반 전단파 속도 추정

  • Lee, Jin Ho (Department of Ocean Engineering, Pukyong National University) ;
  • Lee, Se Hyeok (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 이진호 (부경대학교 해양공학과) ;
  • 이세혁 (한국건설기술연구원 구조연구본부)
  • Received : 2021.06.16
  • Accepted : 2021.06.25
  • Published : 2021.08.31

Abstract

This paper proposes full waveform inversion (FWI) for estimating the physical properties of a layered half-space. An FWI solution is obtained using a genetic algorithm (GA), which is a well-known global optimization approach. The dynamic responses of a layered half-space subjected to a harmonic vertical disk load are measured and compared with those calculated using the estimated physical properties. The responses are calculated using the thin-layer method, which is accurate and efficient for layered media. Subsequently, a numerical model is constructed for a layered half-space using mid-point integrated finite elements and perfectly matched discrete layers. An objective function of the global optimization problem is defined as the L2-norm of the difference between the observed and estimated responses. A GA is used to minimize the objective function and obtain a solution for the FWI. The accuracy of the proposed approach is applied to various problems involving layered half-spaces. The results verify that the proposed FWI based on a GA is suitable for estimating the material properties of a layered half-space, even when the measured responses include measurement noise.

전역 최적화 문제의 해를 유전 알고리즘을 사용하여 얻어 완전파형역산을 수행하고 층상 반무한체의 물성치를 추정하는 기법을 제안한다. 조화 수직 하중이 작용하는 층상 반무한체의 동적 응답을 측정하고, 이를 추정 물성치를 사용하여 계산된 응답과 비교한다. 응답의 추정치는 mid-point integrated finite element와 perfectly matched discrete layer를 사용하여 구성된 thin-layer model로부터 얻는다. 전역 최적화 문제의 목적 함수는 응답의 관측치와 추정치의 차이에 대한 L2-norm으로 계산된다. 유전 알고리즘을 사용하여 전역 최적화 문제의 해를 구하여 완전파형역산을 수행한다. 제안된 기법을 기본 진동 모드 뿐만이 아니라 고차 진동 모드도 우세한 다양한 층상 반무한 매질에 적용하여, 측정치가 잡음을 포함하지 않는 경우와 포함하는 경우 모두에 대해서 제안된 완전파형역산 기법은 층상 반무한체의 재료 특성을 추정하는데 적합함을 확인할 수 있다.

Keywords

Acknowledgement

이 논문(또는 저서)은 부경대학교 자율창의학술연구비 (2019년)에 의하여 연구되었음.

References

  1. Astaneh, A.V., Guddati, M.N. (2016a) Improved Inversion Algorithms for Near-Surface Characterization, Geophys. J. Int., 206(2), pp.1410~1423. https://doi.org/10.1093/gji/ggw192
  2. Astaneh, A.V., Guddati, M.N. (2016b) Efficient Computation of Dispersion Curves for Multilayered Waveguides and HalfSpaces, Comput. Methods Appl. Mech. & Eng., 300, pp.27~46. https://doi.org/10.1016/j.cma.2015.11.019
  3. De Oliveira Barbosa, J.M., Park, J., Kausel, E. (2012) Perfectly Matched Layers in the Thin Layer Method, Comput. Methods Appl. Mech. & Eng., 217-220, pp.262~274. https://doi.org/10.1016/j.cma.2011.12.006
  4. Fathi, A., Kallivokas, L.F., Poursartip, B. (2015) Full-Waveform Inversion in Three-Dimensional PML-Truncated Elastic Media, Comput. Methods Appl. Mech. & Eng., 296, pp.39~72. https://doi.org/10.1016/j.cma.2015.07.008
  5. Guddati, M.N., Druskin, V., Astaneh, A.V. (2016) Exponential Convergence through Linear Finite Element Discretization of Stratified Subdomains, J. Comput. Phys., 322, pp.492~447.
  6. Hansen, P.C. (1992) Analysis of Discrete Ill-Posed Problems by Means of the L-Curve, SIAM Rev., 34(4), pp.561~580. https://doi.org/10.1137/1034115
  7. Kausel, E. (1981) An Explicit Solution for the Green's Functions for Dynamic Loads in Layered Media, MIT Research Report R81-13, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  8. Kausel, E. (1996) Discussion: Dynamic Response of a MultiLayered Poroelastic Medium by Rajapakse RKND, Senjuntichai T., Earthq. Eng. & Struct. Dyn., 25(10), pp.1165~1167. https://doi.org/10.1002/(SICI)1096-9845(199610)25:10<1165::AID-EQE600>3.0.CO;2-I
  9. Lee, J.H., Kim, J.K., Tassoulas, J.L. (2011) Implementation of a Second-Order Paraxial Boundary Condition for a WaterSaturated Layered Half-Space in Plane Strain, Earthq. Eng. & Struct. Dyn., 40, pp.531~550. https://doi.org/10.1002/eqe.1047
  10. Lee, J.H., Lee, S.-H. (2021) Full Waveform Inversion to Estimate the Material Properties of a Layered Half-Space, Soil Dyn. & Earthq. Eng. (in review).
  11. Lee, J.H., Tassoulas, J.L. (2011) Consistent Transmitting Boundary with Continued-Fraction Absorbing Boundary Conditions for Analysis of Soil-Structure Interaction in a Layered Half-Space, Comput. Methods Appl. Mech. & Eng., 200, pp.1509~1525. https://doi.org/10.1016/j.cma.2011.01.004
  12. Mashayekh, H., Kallivokas, L.F., Tassoulas, J.L. (2018) Parameter Estimation in Layered Media Using Dispersion-Constrained Inversion, J. Eng. Mech., 144(11), 04018099. https://doi.org/10.1061/(asce)em.1943-7889.0001527
  13. MathWorks, Incorporation (2021) https://kr.mathworks.com/help/gads/ga.html?searchHighlight=ga&s_tid=srchtitle (accessed June, 30, 2021).
  14. Nazarian, S., Stokoe Ii, K.H., Hudson, W.R. (1983) Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems, Transp. Res. Rec., 390, pp.38~45.
  15. Park, C.B., Miller, R.D., Xia, J. (1999) Multichannel Analysis of Surface Waves, Geophys., 64(3), pp.800~808. https://doi.org/10.1190/1.1444590
  16. Virieux, J., Operto, S. (2009) An Overview of Full-Waveform Inversion in Exploration Geophysics, Geophys., 74(6), WCC127-WCC152.
  17. Xu, Y.X., Xia, J.H., Miller, R.D. (2006) Quantitative Estimation of Minimum Offset for Multichannel Surface-Wave Survey with Actively Exciting Source, J. Appl. Geophys., 59(2), pp.117~125. https://doi.org/10.1016/j.jappgeo.2005.08.002
  18. Yi, S.-R., Kim, B., Kang, J.W. (2015) A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis, J. Comput. Struct. Eng. Inst. Korea, 28(2), pp.123~130. https://doi.org/10.7734/COSEIK.2015.28.2.123