DOI QR코드

DOI QR Code

Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material

PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석

  • Kim, Sung-Jo (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Ji-Su (Department of Civil Engineering, Technische Universitat Berlin) ;
  • Han, Tong-Seok (Department of Civil and Environmental Engineering, Yonsei University)
  • 김성조 (연세대학교 건설환경공학과) ;
  • 김지수 (베를린 공과대학 토목공학과) ;
  • 한동석 (연세대학교 건설환경공학과)
  • Received : 2021.06.14
  • Accepted : 2021.07.29
  • Published : 2021.08.31

Abstract

Polytetrafluoroethylene (PTFE) is a commercialized friction material in friction pendulum systems used for earthquake hazard mitigation in structures, and it has excellent chemical resistance and frictional performance. However, PTFE has a relatively low wear resistance for the friction pendulum systems in service. As an alternative to PTFE, a cost-effective frictional material, polyvinylidene fluoride (PVDF) strengthened by magnesium oxide (MgO), with enhanced wear resistance performance is proposed in this study. The frictional performance of the developed PVDF/MgO was evaluated through experiments and compared with that of PTFE. Accordingly, a friction pendulum system was designed using the measured friction coefficient. The performance of this friction pendulum system was evaluated via nonlinear time history analyses of bridges. Subsequently, the plausibility of using PVDF/MgO as an alternative to PTFE as a friction material for friction pendulum systems was discussed.

구조물을 지진 위험으로부터 완화시키기 위한 마찰면진장치의 상용화된 마찰재료 중 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)은 내화학성과 마찰성능이 우수하다. 그러나 PTFE는 상대적으로 낮은 내마모성을 가지므로 경제적인 마찰재료이며 산화마그네슘(oxide magnesium, MgO)으로 내마모성을 증가시킨 개선된 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF)를 PTFE의 대안으로 제안하였다. 개발된 PVDF/MgO 마찰재를 이용하여 실험을 통해 마찰성능을 측정하였으며 PTFE의 마찰성능과 비교하였다. 그리고 측정된 마찰계수를 이용하여 마찰면진장치를 설계하였다. 마찰면진장치의 성능은 교량의 비선형 시간이력 해석을 통해 확인하였고, 이를 통해 마찰면진장치의 마찰재료로 PTFE를 대체하여 PVDF/MgO를 사용하는 것에 대한 타당성을 평가하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원 (KETEP)의 지원을 받아 수행한 연구 과제입니다(20194030202460).

References

  1. American Association of State Highway and Transportation Officials (AASHTO) (2010) Guide Specifications for Seismic Isolation Design, American Association of State Highway and Transportation Officials.
  2. Aviram, A., Mackie, K.R., Stojadinovic, B. (2008) Guidelines for Non-Linear Analysis of Bridge Structures in California, Rep. No. 2008/03, Pacific Earthquake Engineering Research Center, Univ. of California, Berkely.
  3. Burris, D.L., Sawyer, W.G. (2006) Improved Wear Resistance in Alumina-PTFE Nanocomposites with Irregular Shaped Nanoparticles, Wear, 260, pp.915~918. https://doi.org/10.1016/j.wear.2005.06.009
  4. Castaldo, P., Palazzo, B., Della Vecchia, P. (2015) Seismic Reliability of Base-Isolated Structures with Friction Pendulum Bearings, Eng. Struct., 95, pp.80~93. https://doi.org/10.1016/j.engstruct.2015.03.053
  5. Jangid, R.S. (2005) Optimum Friction Pendulum System for Near-Fault Motions, Eng. Struct., 27, pp.349~359. https://doi.org/10.1016/j.engstruct.2004.09.013
  6. Kim, S.J., Kim, S.Y., Ji, Y.S., Kim, B.S., Han, T.S. (2020) Study on the Performance Verification of PRB Isolation Device using Simulation and Experiment, J. Comput. Struct. Eng. Inst. Korea, 33, pp.311~318. https://doi.org/10.7734/COSEIK.2020.33.5.311
  7. Liu, B., Chen, C., Li, T., Crittenden, J., Chen, Y. (2013) High Performance Ultrafiltration Membrane Composed of PVDF Blended with its Derivative Copolymer PVDF-g-PERMA, J. Membr. Sci., 445, pp.66~75. https://doi.org/10.1016/j.memsci.2013.05.043
  8. Lu, L.Y., Lee, T.Y., Yeh, S.W. (2011) Theory and Experimental Study for Sliding Isolators with Variable Curvature, Earthq. Eng. & Struct. Dyn., 40, pp.1609~1627. https://doi.org/10.1002/eqe.1106
  9. Mackie, K.R., Stojadinovic, B. (2006) Post-Earthquake Functionality of Highway Overpass Bridges, Earthq. Eng. & Struct. Dyn., 35, pp.77~93. https://doi.org/10.1002/eqe.534
  10. McKenna, F., Fenves, G., Jeremic, B., Scott, M. (2000) Open System for Earthquake Engineering Simulation (OpenSees), University of California, Berkeley.
  11. Medhekar, M.S., Kennedy, D.J.L. (2000) Displacement-based Seismic Design of Buildings, Eng. Struct., 22, pp.201~209. https://doi.org/10.1016/S0141-0296(98)00092-3
  12. Park, M.S., Sung, H.S., Park, C.H., Han, T.S., Kim, J.H. (2019) High Triboligy Performance of Poly (Vinylidene Fluoride) Composites based on Three-Dimensional Mesoporous Magnesium Oxide Nanosheets, Compos. Part B: Eng., 163, pp.224~235. https://doi.org/10.1016/j.compositesb.2018.10.096
  13. Takeichi, Y., Bibowo, A., Kawamura, M., Uemura, M. (2008) Effect of Morphology of Carbon Black Fillers on the Tribological Properties of Fibrillated PTFE, Wear, 264, pp.308~315. https://doi.org/10.1016/j.wear.2007.03.013