References
- Abedini, M. and Zhang, C. (2020), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473.
- Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441. https://doi.org/10.12989/sem.2021.77.4.441.
- Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E. (2020), "Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column", Structures, 28, 456-466. https://doi.org/10.1016/j.istruc.2020.08.084.
- ACI 134-138 (1995), Building code requirements for structural concrete-ACI318-95, American Concrete Institute; Michigan, U.S.A.
- Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.
- AK, D., Selvi, M.T., Leela, D. and Kumar, S. (2018), "Self-compacting concrete-an analysis of properties using fly ash", Int. J. Eng. Technol., 7(2.24), 135-139. https://doi.org/10.14419/ijet.v7i2.24.12018.
- Alam, Z., Zhang, C. and Samali, B. (2020a), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec., 29(12), e1750. https://doi.org/10.1002/tal.1750.
- Alam, Z., Zhang, C. and Samali, B. (2020b), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.
- Alam, Z., Sun, L., Zhang, C., Su, Z. and Samali, B. (2020c), "Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure", Struct. Infrastruct. E., 17(1), 86-102. https://doi.org/10.1080/15732479.2020.1730914.
- Ardalan, R.B., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of selfcompacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122. https://doi:10.1016/j.conbuildmat.2016.12.090.
- Badogiannis, E. and Tsivilis, S. (2009), "Exploitation of poor Greek kaolins: Durability of metakaolin concrete", Cement Concrete Comp., 31(2), 128-133. https://doi.org/10.1016/j.cemconcomp.2008.11.001.
- Badogiannis, E.G., Sfikas, I.P., Voukia, D.V., Trezos, K.G. and Tsivilis, S.G. (2015), "Durability of metakaolin self-compacting concrete", Constr. Build. Mater., 82, 133-141. http://doi.org/10.1016/j.conbuildmat.2015.02.023.
- Badry, F. (2015), Experimental and numerical studies in selfcompacting concrete, Ph.D. Dissertation, Cardiff University, Cardiff, U.K.
- Cassagnabere, F., Mouret, M., Escadeillas, G., Broilliard, P. and Bertrand, A. (2010), "Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects", Constr. Build. Mater., 24(7), 1109-1118. https://doi.org/10.1016/j.conbuildmat.2009.12.032.
- Golafshani, E.M. and Ashour, A. (2016), "Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques", Automat. Constr. 64: 7-19. http://dx.doi.org/10.1016/j.autcon.2015.12.026.
- Golewski, G. and Sadowski, T. (2014), "An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044.
- Golewski, G. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Constr. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.
- Gruber, K.A., Ramlochan, T., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2001), "Increasing concrete durability with high-reactivity metakaolin", Cement Concrete Comp., 23(6), 479-484. https://doi.org/10.1016/S0958-9465(00)00097-4.
- Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2008), "Improving strength, drying shrinkage, and pore structure of concrete using metakaolin", Mater. Struct., 41(5), 937-949. https://doi.org/10.1617/s11527-007-9296-z.
- Guo, Z., Jiang, T., Zhang, J., Kong, X., Chen, C. and Lehman, D. E. (2020), "Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume", Constr. Build. Mater., 231, 117115. https://doi.org/10.1016/j.conbuildmat.2019.117115.
- Hassan, A., Lachemi, M. and Hossain, K. (2010), Effect of Metakaolin on the Rheology of Self-Consolidating Concrete, in Design, Production and Placement of Self-Consolidating Concrete, Springer, Dordrecht, Netherlands.
- Iris, G.T., Belen, G.F. Jua, P. and Javier, E.L. (2017), "Prediction of self-compactin g recycled concrete mechanical properties using vibrated recycled concrete experience", Constr. Build. Mater., 131, 641-654. https://doi.org/10.1016/j.jclepro.2020.121362.
- Jalal, M., Pouladkhan, A., Harandi, O.F. and Jafari, D. (2015), "Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete", Constr. Build. Mater., 94, 90-104. https://doi.org/10.1016/j.conbuildmat.2015.07.001.
- Khodabakhshian, A., Ghalehnovi, M. De Brito, J. and Shamsabadi, E.A. (2018), "Durability performance of structural concrete containing silica fume and marble industry waste powder", J. Clean. Prod., 170, 42-60. https://doi.org/10.1016/j.jclepro.2017.09.116.
- Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
- Liu, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou", Environ. Sci. Pollut. R. 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
- Liu, J., Liu, Y. and Wang, X. (2020b), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Clean. Prod., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185.
- Madandoust, R., Ranjbar, M. and Mohseni, E. (2012), "Effect of nano materials on engineering properties of self-compacting mortar containing fly ash", Concrete Res., 5(2), 55-67. https://doi.org/10.1016/j.conbuildmat.2015.07.063.
- Marsh, B.K. and Day, R.L. (1988), "Pozzolanic and cementitious reactions of fly ash in blended cement pastes", Cement Concrete Res., 18(2), 301-310. https://doi.org/10.1016/0008-8846(88)90014-2.
- Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652.
- Memon, N.A., Memon, M.A., Lakho, N.A., Memon, F.A., Keerio, M.A. and Memon, A.N. (2018), "A review on self-compacting concrete with cementitious materials and fibers", Eng. Technol. Appl. Sci. Res., 8(3), 2969-2974. https://doi.org/10.48084/etasr.2006.
- Memon, M.A., Memon, N.A., Memon, A.H., Bhanbhro, R. and Lashari, M.H. (2020), "Flow assessment of self-compacted concrete incorporating fly ash", Eng. Technol. Appl. Sci. Res., 10(2), 5392-5395. https://doi.org/10.48084/etasr.3283.
- Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M. D., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M.B. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
- Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2003), "Performance of metakaolin concrete at elevated temperatures", Cement Concrete Compos., 25(1), 83-89. https://doi.org/10.1016/S0958-9465(01)00061-0.
- Rajaei, S., Shoaei, P., Shariati, M., Ameri, F., Musaeei, H.R., Behforouz, B. and de Brito, J. (2021), "Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials", Constr. Build. Mater., 270, 121430. https://doi.org/10.1016/j.conbuildmat.2020.121430.
- Sfikas, I.P., Badogiannis, E.G. and Trezos, K.G. (2014), "Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin", Constr. Build. Mater., 64, 121-129. https://doi.org/10.1016/j.conbuildmat.2014.04.048.
- Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. http://doi.org/10.12989/sss.2019.24.4.553.
- Shariati, M., Rafie, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Mehrabi, P., Shariat, A., Trung, N.T., Salih, M.N. and PoiNgian, S. (2019b), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Constr., 8(3), 225-237. http://doi.org/10.12989/acc.2019.8.3.225.
- Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2020a), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 267, 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.
- Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020b), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
- Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)," Steel Compos. Struct., 34(1), 155. http://doi.org/10.12989/scs.2020.34.1.155
- Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)," Smart Struct. Syst., 25(2), 183-195. http://doi.org/10.12989/sss.2020.25.2.183.
- Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media, Berlin, Germany
- Sun, L., Li, C., Zhang, C., Su, Z. and Chen. C. (2018), "Early monitoring of rebar corrosion evolution based on FBG sensor", Int. J. Struct. Stabil. Dyn., 18(8), 1840001. https://doi.org/10.1142/S0219455418400011.
- Sun, L., Li, C., Zhang, C., Liang, T. and Zhao, Z. (2019), "The strain transfer mechanism of fiber bragg grating sensor for extra-large strain monitoring", Sensors, 19(8), 1851. https://doi.org/10.3390/s19081851.
- Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stabil. Dyn., 20(6), 2040004. https://doi.org/10.1142/S0219455420400040.
- Toghroli, A., Shariati, M., Karim, M.R. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering, Zurich, Switzerland.
- Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
- Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
- Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.
- Vejmelkova, E., Keppert, M., Grzeszczyk, S., Skalinski, B. and Cerny, R. (2011), "Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag", Constr. Build. Mater., 25(3), 1325-1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012.
- Wang, N., Sun, X., Zhao, Q., Yang, Y. and Wang, P. (2020), "Leachability and adverse effects of coal fly ash: A review", J. Hazard. Mater., 396, 122725. https://doi.org/10.1016/j.jhazmat.2020.122725.
- Wang, N., Sun, X., Zhao, Q. and Wang, P. (2021), "Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism", Chem. Eng. J., 406, 126734. https://doi.org/10.1016/j.cej.2020.126734.
- Xu, D.S., Huang, M. and Zhou, Y. (2020a), "One-dimensional compression behavior of calcareous sand and marine clay mixtures", Int. J. Geomech., 20(9), 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
- Xu, D., Liu, Q., Qin, Y. and Chen, B. (2020b), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 1475921720974290. https://doi.org/10.1177/1475921720974290.
- Xu, J., Li, Y., Ren, C., Wang, S., Vanapalli, S.K. and Chen, G. (2021), "Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess", Cold Reg. Sci. Technol., 181, 103183. https://doi.org/10.1016/j.coldregions.2020.103183.
- Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S. and Song, W. (2015), "New pore space characterization method of shale matrix formation by considering organic and inorganic pores", J. Natl Gas Sci. Eng., 27, 496-503. https://doi.org/10.1016/j.jngse.2015.08.017.
- Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112.
- Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M. and Boskabadi, A. (2020), "Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia", J. Clean. Prod., 280, 124138. https://doi.org/10.1016/j.jclepro.2020.124138.
- Zhang, C.W., Ou, J.P. and Zhang, J.Q. (2006), "Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers", Struct. Control Health Monit., 13(5), 885-896. https://doi.org/10.1002/stc.63.
- Zhang, C. and Ou, J. (2008), "Control structure interaction of electromagnetic mass damper system for structural vibration control", J. Eng. Mech., 134(5), 428-437. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(428).
- Zhang, C. and Wang, H. (2019a), "Swing vibration control of suspended structure using active rotary inertia driver system: Parametric analysis and experimental verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144.
- Zhang, C. and Wang, H. (2019b), "Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations", Appl. Sci., 9(20), 4391. https://doi.org/10.3390/app9204391.
- Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019a), "Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.
- Zhang, H., Sun, M., Song, L., Guo, J. and Zhang, L. (2019b), "Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge", Biochem. Eng. J., 147, 146-152. https://doi.org/10.1016/j.bej.2019.04.016.
- Zhang, L., Zheng, J., Tian, S., Zhang, H., Guan, X., Zhu, S., Zhang, X., Bai, Y., Xu, P. and Zhang, J. (2020a), "Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge", J. Environ. Sci., 91, 212-221. https://doi.org/10.1016/j.jes.2020.02.010.
- Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-ofthe-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. E., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5.
- Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X. and Xu, P. (2020c), "Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge", Chemosphere, 253, 126638. https://doi.org/10.1016/j.chemosphere.2020.126638.
- Zhang, L., Zhang, M., You, S., Ma, D., Zhao, J. and Chen, Z. (2021), "Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process", Sci. Total Environ., 780, 146505. https://doi.org/10.1016/j.scitotenv.2021.146505.
- Zhao, X., Gu, B., Gao, F. and Chen, S. (2020), "Matching model of energy supply and demand of the integrated energy system in coastal areas", J. Coastal Res., 103(SI), 983-989. https://doi.org/10.2112/SI103-205.1.
- Zheng, J., Zhang, C. and Li, A. (2020), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269.
- Zhu, L., Zhang, C., Guan, X., Uy, B., Sun, L. and Wang, B. (2018), "The multi-axial strength performance of composited structural BCW members subjected to shear forces", Steel Compos. Struct., 27(1), 75-87. http://doi.org/10.12989/scs.2018.27.1.075.
- Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. http://doi.org/10.12989/scs.2018.29.1.067.
- Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Opt. Laser Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006.
- Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Scientific Reports, 7(1), 1-22. https://doi.org/10.1038/s41598-017-06837-1.
- Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coastal Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1.