DOI QR코드

DOI QR Code

Investigating the effect of using three pozzolans separately and in combination on the properties of self-compacting concrete

  • Orak, Milad (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University) ;
  • Sajedi, Fathollah (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University)
  • Received : 2021.02.12
  • Accepted : 2021.05.22
  • Published : 2021.08.25

Abstract

Today, the tendency to use self-compacting concrete (SCC) is expanding because of its significant benefits. In this study, SCC was made by using native materials and then different pozzolans were replaced instead of a part of cement and the rheological and mechanical properties and microstructure of the concrete were investigated. The pozzolans containing of metakaolin (15%, 25% and 35%), silica fume (6%, 12% and 18%) and fly ash (20%, 35% and 50%) were replaced instead of a part of cement separately or simultaneously. Self-compaction tests including slump flow, T500, L-box, U-box, and J-ring as well as mechanical tests including compressive strength, splitting tensile strength, and static modulus of elasticity were performed on the specimens. The results showed that the pozzolans improved the microstructure of the SCC and the secondary reactions improved the mechanical properties of the concrete containing the pozzolans at older ages than the reference concrete. At 15% replacement, metakaolin increased the 180-day compressive strength up to 106 MPa that was about 18% more than reference concrete. In ternary mixtures the maximum and minimum rate were 29% and 19%, respectively, and in quaternary mixtures the rates were significant and increased up to 46%, while the rate for reference concrete was 20%. This significant growth was probably due to the secondary reaction of pozzolans with calcium hydroxide residue from cement hydration.

Keywords

References

  1. Abedini, M. and Zhang, C. (2020), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473.
  2. Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441. https://doi.org/10.12989/sem.2021.77.4.441.
  3. Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E. (2020), "Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column", Structures, 28, 456-466. https://doi.org/10.1016/j.istruc.2020.08.084.
  4. ACI 134-138 (1995), Building code requirements for structural concrete-ACI318-95, American Concrete Institute; Michigan, U.S.A.
  5. Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.
  6. AK, D., Selvi, M.T., Leela, D. and Kumar, S. (2018), "Self-compacting concrete-an analysis of properties using fly ash", Int. J. Eng. Technol., 7(2.24), 135-139. https://doi.org/10.14419/ijet.v7i2.24.12018.
  7. Alam, Z., Zhang, C. and Samali, B. (2020a), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec., 29(12), e1750. https://doi.org/10.1002/tal.1750.
  8. Alam, Z., Zhang, C. and Samali, B. (2020b), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.
  9. Alam, Z., Sun, L., Zhang, C., Su, Z. and Samali, B. (2020c), "Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure", Struct. Infrastruct. E., 17(1), 86-102. https://doi.org/10.1080/15732479.2020.1730914.
  10. Ardalan, R.B., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of selfcompacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122. https://doi:10.1016/j.conbuildmat.2016.12.090.
  11. Badogiannis, E. and Tsivilis, S. (2009), "Exploitation of poor Greek kaolins: Durability of metakaolin concrete", Cement Concrete Comp., 31(2), 128-133. https://doi.org/10.1016/j.cemconcomp.2008.11.001.
  12. Badogiannis, E.G., Sfikas, I.P., Voukia, D.V., Trezos, K.G. and Tsivilis, S.G. (2015), "Durability of metakaolin self-compacting concrete", Constr. Build. Mater., 82, 133-141. http://doi.org/10.1016/j.conbuildmat.2015.02.023.
  13. Badry, F. (2015), Experimental and numerical studies in selfcompacting concrete, Ph.D. Dissertation, Cardiff University, Cardiff, U.K.
  14. Cassagnabere, F., Mouret, M., Escadeillas, G., Broilliard, P. and Bertrand, A. (2010), "Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects", Constr. Build. Mater., 24(7), 1109-1118. https://doi.org/10.1016/j.conbuildmat.2009.12.032.
  15. Golafshani, E.M. and Ashour, A. (2016), "Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques", Automat. Constr. 64: 7-19. http://dx.doi.org/10.1016/j.autcon.2015.12.026.
  16. Golewski, G. and Sadowski, T. (2014), "An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044.
  17. Golewski, G. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Constr. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.
  18. Gruber, K.A., Ramlochan, T., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2001), "Increasing concrete durability with high-reactivity metakaolin", Cement Concrete Comp., 23(6), 479-484. https://doi.org/10.1016/S0958-9465(00)00097-4.
  19. Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2008), "Improving strength, drying shrinkage, and pore structure of concrete using metakaolin", Mater. Struct., 41(5), 937-949. https://doi.org/10.1617/s11527-007-9296-z.
  20. Guo, Z., Jiang, T., Zhang, J., Kong, X., Chen, C. and Lehman, D. E. (2020), "Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume", Constr. Build. Mater., 231, 117115. https://doi.org/10.1016/j.conbuildmat.2019.117115.
  21. Hassan, A., Lachemi, M. and Hossain, K. (2010), Effect of Metakaolin on the Rheology of Self-Consolidating Concrete, in Design, Production and Placement of Self-Consolidating Concrete, Springer, Dordrecht, Netherlands.
  22. Iris, G.T., Belen, G.F. Jua, P. and Javier, E.L. (2017), "Prediction of self-compactin g recycled concrete mechanical properties using vibrated recycled concrete experience", Constr. Build. Mater., 131, 641-654. https://doi.org/10.1016/j.jclepro.2020.121362.
  23. Jalal, M., Pouladkhan, A., Harandi, O.F. and Jafari, D. (2015), "Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete", Constr. Build. Mater., 94, 90-104. https://doi.org/10.1016/j.conbuildmat.2015.07.001.
  24. Khodabakhshian, A., Ghalehnovi, M. De Brito, J. and Shamsabadi, E.A. (2018), "Durability performance of structural concrete containing silica fume and marble industry waste powder", J. Clean. Prod., 170, 42-60. https://doi.org/10.1016/j.jclepro.2017.09.116.
  25. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
  26. Liu, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou", Environ. Sci. Pollut. R. 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
  27. Liu, J., Liu, Y. and Wang, X. (2020b), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Clean. Prod., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185.
  28. Madandoust, R., Ranjbar, M. and Mohseni, E. (2012), "Effect of nano materials on engineering properties of self-compacting mortar containing fly ash", Concrete Res., 5(2), 55-67. https://doi.org/10.1016/j.conbuildmat.2015.07.063.
  29. Marsh, B.K. and Day, R.L. (1988), "Pozzolanic and cementitious reactions of fly ash in blended cement pastes", Cement Concrete Res., 18(2), 301-310. https://doi.org/10.1016/0008-8846(88)90014-2.
  30. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652.
  31. Memon, N.A., Memon, M.A., Lakho, N.A., Memon, F.A., Keerio, M.A. and Memon, A.N. (2018), "A review on self-compacting concrete with cementitious materials and fibers", Eng. Technol. Appl. Sci. Res., 8(3), 2969-2974. https://doi.org/10.48084/etasr.2006.
  32. Memon, M.A., Memon, N.A., Memon, A.H., Bhanbhro, R. and Lashari, M.H. (2020), "Flow assessment of self-compacted concrete incorporating fly ash", Eng. Technol. Appl. Sci. Res., 10(2), 5392-5395. https://doi.org/10.48084/etasr.3283.
  33. Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M. D., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M.B. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
  34. Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2003), "Performance of metakaolin concrete at elevated temperatures", Cement Concrete Compos., 25(1), 83-89. https://doi.org/10.1016/S0958-9465(01)00061-0.
  35. Rajaei, S., Shoaei, P., Shariati, M., Ameri, F., Musaeei, H.R., Behforouz, B. and de Brito, J. (2021), "Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials", Constr. Build. Mater., 270, 121430. https://doi.org/10.1016/j.conbuildmat.2020.121430.
  36. Sfikas, I.P., Badogiannis, E.G. and Trezos, K.G. (2014), "Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin", Constr. Build. Mater., 64, 121-129. https://doi.org/10.1016/j.conbuildmat.2014.04.048.
  37. Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. http://doi.org/10.12989/sss.2019.24.4.553.
  38. Shariati, M., Rafie, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Mehrabi, P., Shariat, A., Trung, N.T., Salih, M.N. and PoiNgian, S. (2019b), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Constr., 8(3), 225-237. http://doi.org/10.12989/acc.2019.8.3.225.
  39. Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2020a), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 267, 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.
  40. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020b), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  41. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)," Steel Compos. Struct., 34(1), 155. http://doi.org/10.12989/scs.2020.34.1.155
  42. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)," Smart Struct. Syst., 25(2), 183-195. http://doi.org/10.12989/sss.2020.25.2.183.
  43. Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media, Berlin, Germany
  44. Sun, L., Li, C., Zhang, C., Su, Z. and Chen. C. (2018), "Early monitoring of rebar corrosion evolution based on FBG sensor", Int. J. Struct. Stabil. Dyn., 18(8), 1840001. https://doi.org/10.1142/S0219455418400011.
  45. Sun, L., Li, C., Zhang, C., Liang, T. and Zhao, Z. (2019), "The strain transfer mechanism of fiber bragg grating sensor for extra-large strain monitoring", Sensors, 19(8), 1851. https://doi.org/10.3390/s19081851.
  46. Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stabil. Dyn., 20(6), 2040004. https://doi.org/10.1142/S0219455420400040.
  47. Toghroli, A., Shariati, M., Karim, M.R. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering, Zurich, Switzerland.
  48. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
  49. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
  50. Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.
  51. Vejmelkova, E., Keppert, M., Grzeszczyk, S., Skalinski, B. and Cerny, R. (2011), "Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag", Constr. Build. Mater., 25(3), 1325-1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012.
  52. Wang, N., Sun, X., Zhao, Q., Yang, Y. and Wang, P. (2020), "Leachability and adverse effects of coal fly ash: A review", J. Hazard. Mater., 396, 122725. https://doi.org/10.1016/j.jhazmat.2020.122725.
  53. Wang, N., Sun, X., Zhao, Q. and Wang, P. (2021), "Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism", Chem. Eng. J., 406, 126734. https://doi.org/10.1016/j.cej.2020.126734.
  54. Xu, D.S., Huang, M. and Zhou, Y. (2020a), "One-dimensional compression behavior of calcareous sand and marine clay mixtures", Int. J. Geomech., 20(9), 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
  55. Xu, D., Liu, Q., Qin, Y. and Chen, B. (2020b), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 1475921720974290. https://doi.org/10.1177/1475921720974290.
  56. Xu, J., Li, Y., Ren, C., Wang, S., Vanapalli, S.K. and Chen, G. (2021), "Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess", Cold Reg. Sci. Technol., 181, 103183. https://doi.org/10.1016/j.coldregions.2020.103183.
  57. Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S. and Song, W. (2015), "New pore space characterization method of shale matrix formation by considering organic and inorganic pores", J. Natl Gas Sci. Eng., 27, 496-503. https://doi.org/10.1016/j.jngse.2015.08.017.
  58. Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112.
  59. Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M. and Boskabadi, A. (2020), "Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia", J. Clean. Prod., 280, 124138. https://doi.org/10.1016/j.jclepro.2020.124138.
  60. Zhang, C.W., Ou, J.P. and Zhang, J.Q. (2006), "Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers", Struct. Control Health Monit., 13(5), 885-896. https://doi.org/10.1002/stc.63.
  61. Zhang, C. and Ou, J. (2008), "Control structure interaction of electromagnetic mass damper system for structural vibration control", J. Eng. Mech., 134(5), 428-437. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(428).
  62. Zhang, C. and Wang, H. (2019a), "Swing vibration control of suspended structure using active rotary inertia driver system: Parametric analysis and experimental verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144.
  63. Zhang, C. and Wang, H. (2019b), "Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations", Appl. Sci., 9(20), 4391. https://doi.org/10.3390/app9204391.
  64. Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019a), "Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.
  65. Zhang, H., Sun, M., Song, L., Guo, J. and Zhang, L. (2019b), "Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge", Biochem. Eng. J., 147, 146-152. https://doi.org/10.1016/j.bej.2019.04.016.
  66. Zhang, L., Zheng, J., Tian, S., Zhang, H., Guan, X., Zhu, S., Zhang, X., Bai, Y., Xu, P. and Zhang, J. (2020a), "Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge", J. Environ. Sci., 91, 212-221. https://doi.org/10.1016/j.jes.2020.02.010.
  67. Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-ofthe-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. E., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5.
  68. Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X. and Xu, P. (2020c), "Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge", Chemosphere, 253, 126638. https://doi.org/10.1016/j.chemosphere.2020.126638.
  69. Zhang, L., Zhang, M., You, S., Ma, D., Zhao, J. and Chen, Z. (2021), "Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process", Sci. Total Environ., 780, 146505. https://doi.org/10.1016/j.scitotenv.2021.146505.
  70. Zhao, X., Gu, B., Gao, F. and Chen, S. (2020), "Matching model of energy supply and demand of the integrated energy system in coastal areas", J. Coastal Res., 103(SI), 983-989. https://doi.org/10.2112/SI103-205.1.
  71. Zheng, J., Zhang, C. and Li, A. (2020), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269.
  72. Zhu, L., Zhang, C., Guan, X., Uy, B., Sun, L. and Wang, B. (2018), "The multi-axial strength performance of composited structural BCW members subjected to shear forces", Steel Compos. Struct., 27(1), 75-87. http://doi.org/10.12989/scs.2018.27.1.075.
  73. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. http://doi.org/10.12989/scs.2018.29.1.067.
  74. Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Opt. Laser Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006.
  75. Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Scientific Reports, 7(1), 1-22. https://doi.org/10.1038/s41598-017-06837-1.
  76. Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coastal Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1.