Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.2.141

Investigating the effect of using three pozzolans separately and in combination on the properties of self-compacting concrete  

Orak, Milad (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University)
Sajedi, Fathollah (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University)
Publication Information
Advances in nano research / v.11, no.2, 2021 , pp. 141-155 More about this Journal
Abstract
Today, the tendency to use self-compacting concrete (SCC) is expanding because of its significant benefits. In this study, SCC was made by using native materials and then different pozzolans were replaced instead of a part of cement and the rheological and mechanical properties and microstructure of the concrete were investigated. The pozzolans containing of metakaolin (15%, 25% and 35%), silica fume (6%, 12% and 18%) and fly ash (20%, 35% and 50%) were replaced instead of a part of cement separately or simultaneously. Self-compaction tests including slump flow, T500, L-box, U-box, and J-ring as well as mechanical tests including compressive strength, splitting tensile strength, and static modulus of elasticity were performed on the specimens. The results showed that the pozzolans improved the microstructure of the SCC and the secondary reactions improved the mechanical properties of the concrete containing the pozzolans at older ages than the reference concrete. At 15% replacement, metakaolin increased the 180-day compressive strength up to 106 MPa that was about 18% more than reference concrete. In ternary mixtures the maximum and minimum rate were 29% and 19%, respectively, and in quaternary mixtures the rates were significant and increased up to 46%, while the rate for reference concrete was 20%. This significant growth was probably due to the secondary reaction of pozzolans with calcium hydroxide residue from cement hydration.
Keywords
fly ash (FA); limestone powder (LP); metakaolin (MK); microstructure; self-compacting concrete (SCC) properties; silica fume (SF);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alam, Z., Zhang, C. and Samali, B. (2020b), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.   DOI
2 Alam, Z., Sun, L., Zhang, C., Su, Z. and Samali, B. (2020c), "Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure", Struct. Infrastruct. E., 17(1), 86-102. https://doi.org/10.1080/15732479.2020.1730914.   DOI
3 Ardalan, R.B., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of selfcompacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122. https://doi:10.1016/j.conbuildmat.2016.12.090.   DOI
4 Badry, F. (2015), Experimental and numerical studies in selfcompacting concrete, Ph.D. Dissertation, Cardiff University, Cardiff, U.K.
5 Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stabil. Dyn., 20(6), 2040004. https://doi.org/10.1142/S0219455420400040.   DOI
6 Toghroli, A., Shariati, M., Karim, M.R. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering, Zurich, Switzerland.
7 Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S. and Song, W. (2015), "New pore space characterization method of shale matrix formation by considering organic and inorganic pores", J. Natl Gas Sci. Eng., 27, 496-503. https://doi.org/10.1016/j.jngse.2015.08.017.   DOI
8 Guo, Z., Jiang, T., Zhang, J., Kong, X., Chen, C. and Lehman, D. E. (2020), "Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume", Constr. Build. Mater., 231, 117115. https://doi.org/10.1016/j.conbuildmat.2019.117115.   DOI
9 Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112.   DOI
10 Badogiannis, E. and Tsivilis, S. (2009), "Exploitation of poor Greek kaolins: Durability of metakaolin concrete", Cement Concrete Comp., 31(2), 128-133. https://doi.org/10.1016/j.cemconcomp.2008.11.001.   DOI
11 Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652.   DOI
12 Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-ofthe-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. E., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5.   DOI
13 Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019a), "Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.   DOI
14 Zhang, H., Sun, M., Song, L., Guo, J. and Zhang, L. (2019b), "Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge", Biochem. Eng. J., 147, 146-152. https://doi.org/10.1016/j.bej.2019.04.016.   DOI
15 Zhang, L., Zheng, J., Tian, S., Zhang, H., Guan, X., Zhu, S., Zhang, X., Bai, Y., Xu, P. and Zhang, J. (2020a), "Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge", J. Environ. Sci., 91, 212-221. https://doi.org/10.1016/j.jes.2020.02.010.   DOI
16 Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X. and Xu, P. (2020c), "Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge", Chemosphere, 253, 126638. https://doi.org/10.1016/j.chemosphere.2020.126638.   DOI
17 Zhang, L., Zhang, M., You, S., Ma, D., Zhao, J. and Chen, Z. (2021), "Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process", Sci. Total Environ., 780, 146505. https://doi.org/10.1016/j.scitotenv.2021.146505.   DOI
18 Zheng, J., Zhang, C. and Li, A. (2020), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269.   DOI
19 Golafshani, E.M. and Ashour, A. (2016), "Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques", Automat. Constr. 64: 7-19. http://dx.doi.org/10.1016/j.autcon.2015.12.026.   DOI
20 Cassagnabere, F., Mouret, M., Escadeillas, G., Broilliard, P. and Bertrand, A. (2010), "Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects", Constr. Build. Mater., 24(7), 1109-1118. https://doi.org/10.1016/j.conbuildmat.2009.12.032.   DOI
21 Golewski, G. and Sadowski, T. (2014), "An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044.   DOI
22 Iris, G.T., Belen, G.F. Jua, P. and Javier, E.L. (2017), "Prediction of self-compactin g recycled concrete mechanical properties using vibrated recycled concrete experience", Constr. Build. Mater., 131, 641-654. https://doi.org/10.1016/j.jclepro.2020.121362.   DOI
23 Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. http://doi.org/10.12989/sss.2019.24.4.553.   DOI
24 Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)," Steel Compos. Struct., 34(1), 155. http://doi.org/10.12989/scs.2020.34.1.155   DOI
25 Wang, N., Sun, X., Zhao, Q., Yang, Y. and Wang, P. (2020), "Leachability and adverse effects of coal fly ash: A review", J. Hazard. Mater., 396, 122725. https://doi.org/10.1016/j.jhazmat.2020.122725.   DOI
26 Golewski, G. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Constr. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.   DOI
27 Gruber, K.A., Ramlochan, T., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2001), "Increasing concrete durability with high-reactivity metakaolin", Cement Concrete Comp., 23(6), 479-484. https://doi.org/10.1016/S0958-9465(00)00097-4.   DOI
28 Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2008), "Improving strength, drying shrinkage, and pore structure of concrete using metakaolin", Mater. Struct., 41(5), 937-949. https://doi.org/10.1617/s11527-007-9296-z.   DOI
29 Zhao, X., Gu, B., Gao, F. and Chen, S. (2020), "Matching model of energy supply and demand of the integrated energy system in coastal areas", J. Coastal Res., 103(SI), 983-989. https://doi.org/10.2112/SI103-205.1.   DOI
30 Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coastal Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1.   DOI
31 Jalal, M., Pouladkhan, A., Harandi, O.F. and Jafari, D. (2015), "Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete", Constr. Build. Mater., 94, 90-104. https://doi.org/10.1016/j.conbuildmat.2015.07.001.   DOI
32 Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.   DOI
33 Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.   DOI
34 Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.   DOI
35 Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E. (2020), "Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column", Structures, 28, 456-466. https://doi.org/10.1016/j.istruc.2020.08.084.   DOI
36 Vejmelkova, E., Keppert, M., Grzeszczyk, S., Skalinski, B. and Cerny, R. (2011), "Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag", Constr. Build. Mater., 25(3), 1325-1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012.   DOI
37 Wang, N., Sun, X., Zhao, Q. and Wang, P. (2021), "Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism", Chem. Eng. J., 406, 126734. https://doi.org/10.1016/j.cej.2020.126734.   DOI
38 Xu, D.S., Huang, M. and Zhou, Y. (2020a), "One-dimensional compression behavior of calcareous sand and marine clay mixtures", Int. J. Geomech., 20(9), 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.   DOI
39 Abedini, M. and Zhang, C. (2020), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473.   DOI
40 Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441. https://doi.org/10.12989/sem.2021.77.4.441.   DOI
41 Shariati, M., Rafie, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Mehrabi, P., Shariat, A., Trung, N.T., Salih, M.N. and PoiNgian, S. (2019b), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Constr., 8(3), 225-237. http://doi.org/10.12989/acc.2019.8.3.225.   DOI
42 Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2020a), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 267, 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.   DOI
43 Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020b), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.   DOI
44 Zhang, C.W., Ou, J.P. and Zhang, J.Q. (2006), "Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers", Struct. Control Health Monit., 13(5), 885-896. https://doi.org/10.1002/stc.63.   DOI
45 Sun, L., Li, C., Zhang, C., Liang, T. and Zhao, Z. (2019), "The strain transfer mechanism of fiber bragg grating sensor for extra-large strain monitoring", Sensors, 19(8), 1851. https://doi.org/10.3390/s19081851.   DOI
46 Xu, D., Liu, Q., Qin, Y. and Chen, B. (2020b), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 1475921720974290. https://doi.org/10.1177/1475921720974290.   DOI
47 Badogiannis, E.G., Sfikas, I.P., Voukia, D.V., Trezos, K.G. and Tsivilis, S.G. (2015), "Durability of metakaolin self-compacting concrete", Constr. Build. Mater., 82, 133-141. http://doi.org/10.1016/j.conbuildmat.2015.02.023.   DOI
48 Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M. and Boskabadi, A. (2020), "Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia", J. Clean. Prod., 280, 124138. https://doi.org/10.1016/j.jclepro.2020.124138.   DOI
49 Zhang, C. and Wang, H. (2019a), "Swing vibration control of suspended structure using active rotary inertia driver system: Parametric analysis and experimental verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144.   DOI
50 Zhang, C. and Wang, H. (2019b), "Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations", Appl. Sci., 9(20), 4391. https://doi.org/10.3390/app9204391.   DOI
51 Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Scientific Reports, 7(1), 1-22. https://doi.org/10.1038/s41598-017-06837-1.   DOI
52 Zhu, L., Zhang, C., Guan, X., Uy, B., Sun, L. and Wang, B. (2018), "The multi-axial strength performance of composited structural BCW members subjected to shear forces", Steel Compos. Struct., 27(1), 75-87. http://doi.org/10.12989/scs.2018.27.1.075.   DOI
53 Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. http://doi.org/10.12989/scs.2018.29.1.067.   DOI
54 Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Opt. Laser Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006.   DOI
55 Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media, Berlin, Germany
56 Sun, L., Li, C., Zhang, C., Su, Z. and Chen. C. (2018), "Early monitoring of rebar corrosion evolution based on FBG sensor", Int. J. Struct. Stabil. Dyn., 18(8), 1840001. https://doi.org/10.1142/S0219455418400011.   DOI
57 Sfikas, I.P., Badogiannis, E.G. and Trezos, K.G. (2014), "Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin", Constr. Build. Mater., 64, 121-129. https://doi.org/10.1016/j.conbuildmat.2014.04.048.   DOI
58 Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M. D., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M.B. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.   DOI
59 Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2003), "Performance of metakaolin concrete at elevated temperatures", Cement Concrete Compos., 25(1), 83-89. https://doi.org/10.1016/S0958-9465(01)00061-0.   DOI
60 Rajaei, S., Shoaei, P., Shariati, M., Ameri, F., Musaeei, H.R., Behforouz, B. and de Brito, J. (2021), "Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials", Constr. Build. Mater., 270, 121430. https://doi.org/10.1016/j.conbuildmat.2020.121430.   DOI
61 Memon, M.A., Memon, N.A., Memon, A.H., Bhanbhro, R. and Lashari, M.H. (2020), "Flow assessment of self-compacted concrete incorporating fly ash", Eng. Technol. Appl. Sci. Res., 10(2), 5392-5395. https://doi.org/10.48084/etasr.3283.   DOI
62 Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.   DOI
63 Hassan, A., Lachemi, M. and Hossain, K. (2010), Effect of Metakaolin on the Rheology of Self-Consolidating Concrete, in Design, Production and Placement of Self-Consolidating Concrete, Springer, Dordrecht, Netherlands.
64 Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)," Smart Struct. Syst., 25(2), 183-195. http://doi.org/10.12989/sss.2020.25.2.183.   DOI
65 Xu, J., Li, Y., Ren, C., Wang, S., Vanapalli, S.K. and Chen, G. (2021), "Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess", Cold Reg. Sci. Technol., 181, 103183. https://doi.org/10.1016/j.coldregions.2020.103183.   DOI
66 Khodabakhshian, A., Ghalehnovi, M. De Brito, J. and Shamsabadi, E.A. (2018), "Durability performance of structural concrete containing silica fume and marble industry waste powder", J. Clean. Prod., 170, 42-60. https://doi.org/10.1016/j.jclepro.2017.09.116.   DOI
67 Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.   DOI
68 Liu, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou", Environ. Sci. Pollut. R. 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.   DOI
69 Liu, J., Liu, Y. and Wang, X. (2020b), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Clean. Prod., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185.   DOI
70 ACI 134-138 (1995), Building code requirements for structural concrete-ACI318-95, American Concrete Institute; Michigan, U.S.A.
71 AK, D., Selvi, M.T., Leela, D. and Kumar, S. (2018), "Self-compacting concrete-an analysis of properties using fly ash", Int. J. Eng. Technol., 7(2.24), 135-139. https://doi.org/10.14419/ijet.v7i2.24.12018.   DOI
72 Alam, Z., Zhang, C. and Samali, B. (2020a), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec., 29(12), e1750. https://doi.org/10.1002/tal.1750.   DOI
73 Madandoust, R., Ranjbar, M. and Mohseni, E. (2012), "Effect of nano materials on engineering properties of self-compacting mortar containing fly ash", Concrete Res., 5(2), 55-67. https://doi.org/10.1016/j.conbuildmat.2015.07.063.   DOI
74 Marsh, B.K. and Day, R.L. (1988), "Pozzolanic and cementitious reactions of fly ash in blended cement pastes", Cement Concrete Res., 18(2), 301-310. https://doi.org/10.1016/0008-8846(88)90014-2.   DOI
75 Memon, N.A., Memon, M.A., Lakho, N.A., Memon, F.A., Keerio, M.A. and Memon, A.N. (2018), "A review on self-compacting concrete with cementitious materials and fibers", Eng. Technol. Appl. Sci. Res., 8(3), 2969-2974. https://doi.org/10.48084/etasr.2006.   DOI
76 Zhang, C. and Ou, J. (2008), "Control structure interaction of electromagnetic mass damper system for structural vibration control", J. Eng. Mech., 134(5), 428-437. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(428).   DOI