References
- AASHTO T88 (2013), Standard Method of Test for Particle Size Analysis of Soils, American Association of State Highway and Transportation Officials, Washington, USA.
- ASTM D422 (2006), Standard test methods for particle size analysis of soils, ASTM International, West Conshohocken, PA, USA
- Azarafza, M. and Asghari-Kaljahi, E. (2016), Applied Geotechnical Engineering, Negarkhane Publication, Isfahan, Iran. [in Persian]
- Azarafza, M., Feizi-Derakhshi, M.R. and Jeddi, A. (2017), "Blasting pattern optimization in open-pit mines by using the genetic algorithm", J. Geotech. Geol., 13(2), 75-81.
- Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2019), "Development of a 2D and 3D computational algorithm for discontinuity structural geometry identification by artificial intelligence based on image processing techniques", Bull. Eng. Geol. Environ., 78(5), 3371-3383. https://doi.org/10.1007/s10064-018-1298-2
- Barnard, P.L., Rubin, D.M., Harney, J. and Mustain, N. (2007), "Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods", Sediment. Geol., 201, 180-195. https://doi.org/10.1016/j.sedgeo.2007.05.016
- Becker, L.W.M., Hjelstuen, B.O., Storen, E.W.N. and Sejrup, H.P. (2018), "Automated counting of sand-sized particles in marine records", Sediment. Banner, 65(3), 842-850. https://doi.org/10.1111/sed.12407
- Boggs Jr, S. (2011), Principles of Sedimentology and Stratigraphy, Pearson, New York, NY, USA.
- Budhu, M. (2010), Soil Mechanics and Foundations, (3rd Edition), Wiley, New Jersey, USA.
- Buscombe, D. (2008), "Estimation of grain-size distributions and associated parameters from digital images of sediment", Sediment. Geol., 210, 1-10. https://doi.org/10.1016/j.sedgeo.2008.06.007
- Buscombe, D. and Masselink, G. (2009), "Grain size information from the statistical properties of digital images of sediment", Sediment., 56, 421-438. https://doi.org/10.1111/j.1365-3091.2008.00977.x
- Carlsson, O. and Nyberg, L. (1981), "A method for estimation of fragment size distribution with automatic image processing", Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting, Roger Holmberg, August.
- Cassel, M., Piegay, H., Lave, J., Vaudor, L., Hadmoko, S.D., Budi, S.W. and Lavigne, F. (2018), "Evaluating a 2D image-based computerized approach for measuring riverine pebble roundness", Geomorph., 311, 143-157. https://doi.org/10.1016/j.geomorph.2018.03.020
- Charpentier, I., Sarocchi, D. and Sedano, L.A.R. (2013), "Particle shape analysis of volcanic clast samples with the Matlab tool MORPHEO", Comput. Geosci., 51, 172-181. https://doi.org/10.1016/j.cageo.2012.07.015
- Chavez, G.M., Sarocchi, D., Arce Santana, E. and Borselli, L. (2015), "Optical granulometric analysis of sedimentary deposits by color segmentation-based software: OPTGRAN-CS", Comput. Geosci., 85(A), 248-257. https://doi.org/10.1016/j.cageo.2015.09.007
- Chen, T., Kuo, C.F. and Chen, J.C.Y. (2019), "Computer vision monitoring and detection for landslides", Struct. Monit. Maint., Int. J., 6(2), 161-171. https://doi.org/10.12989/smm.2019.6.2.161
- Davies, E.R. (2012), Computer and Machine Vision: Theory, Algorithms, Practicalities, (4th Edition), Academic Press, MA, USA.
- Dill, H.G., Buzatu, A., Balaban, S.J., Ufer, K., Techmer, A., Schedlinsky, W. and Fussl, M. (2020), "The transition of very coarse-grained meandering to straight fluvial drainage systems in a tectonized foreland-basement landscape during the Holocene (SE Germany) - A joint geomorphological-geological study", Geomorphology, 370, 107364. https://doi.org/10.1016/j.geomorph.2020.107364
- Dipova, N. (2017), "Determining the grain size distribution of granular soils using image analysis", Acta Geotech. Slovenica, 14(1), 29-37.
- Faramarzi, F., Mansouri, H. and Farsangi, M.E. (2013), "A rock engineering systems based model to predict rock fragmentation by blasting", Int. J. Rock. Mech. Min. Sci., 60, 82-94. https://doi.org/10.1016/j.ijrmms.2012.12.045
- Frydrych, M., Rdzany, Z. and Petera-Zganiacz, J. (2019), "The problem of analysing grain size distribution in fluvioglacial coarse-grained sediments", Proceedings of the State International Field Symposium of the Peribaltic Working Group, Greifswald, Germany, September.
- Gonzalez, R.C., Woods, R.E. and Steven, L. (2010), Digital Image Processing using MATLAB, (2nd Edition), McGraw-Hill Education, New York, NY, USA.
- Griffiths, J.C. (1961), "Measurement and properties of sediments", J. Geol., 69, 487-498. https://doi.org/10.1086/626767
- Honakanen, M., Saarenrinne, P., Stoor, T. and Niinimaki, J. (2005), "Recognition of highly overlapping ellipse-like bubble images", Measur. Sci. Technol., 16, 1760-1770. https://doi.org/10.1088/0957-0233/16/9/007
- Korath, J., Abbas, A. and Romagnoli, J. (2007), "Separating touching and overlapping objects in particle images - A combined approach", Chem. Eng. Trans., 11, 167-172.
- Krishna, B.M., Tezeswi, T.P., Kumar, P.R., Gopikrishna, K., Sivakumar, M.V.N. and Shashi, M. (2019), "QR code as speckle pattern for reinforced concrete beams using digital image correlation", Struct. Monit. Maint., Int. J., 6(1), 67-84. https://doi.org/10.12989/smm.2019.6.1.067
- Latham, J.P., Kemeny, J., Maerz, N., Noy, M., Schlifer, J. and Tose, S. (2003), "A blind comparison between results of four image analysis systems using a photo-library of piles of sieved fragments", Int. J. Rock. Fragment. Blast., 7(2), 105-132.
- Liu, Y., Nadolski, S., Elmo, D., Klein, B. and Scoble, M. (2015), "Use of digital imaging processing techniques to characterize block caving secondary fragmentation and implications for proposed cave-to-mill approach", Proceedings of the 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, June.
- Maiti, A., Chakravarty, D., Biswas, K. and Halder, A. (2017), "Development of a mass model in estimating weight-wise particle size distribution using digital image processing", Int. J. Min. Sci. Technol., 27(3), 435-443. https://doi.org/10.1016/j.ijmst.2017.03.015
- Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F. and Malik, J. (2017), "Multiscale combinatorial grouping for image segmentation and object proposal generation", IEEE Trans. Pattern. Anal. Mach. Intell., 39, 128-140. https://doi.org/10.1109/TPAMI.2016.2537320
- Qiao, P. and Fan, W. (2014), "Lamb wave-based damage imaging method for damage detection of rectangular composite plates", Struct. Monit. Maint., Int. J., 1(4), 411-425. https://doi.org/10.12989/smm.2014.1.4.411
- Rubin, D.M. (2004), "A simple autocorrelation algorithm for determining grain size from digital images of sediment", J. Sediment. Res., 74, 160-165. https://doi.org/10.1306/052203740160
- Shen, L., Song, X., Iguchi, M. and Yamamoto, F. (2000), "A method for recognizing particles in overlapped particle images", Pattern Recogn. Let., 21, 21-30. https://doi.org/10.1016/S0167-8655(99)00130-0
- Smith, Z.D. and Maxwell, D.J. (2021), "Constructing vertical measurement logs using UAV-based photogrammetry: Applications for multiscale high-resolution analysis of coarse-grained volcaniclastic stratigraphy", J. Volcan. Geotherm. Res., 409, 107122. https://doi.org/10.1016/j.jvolgeores.2020.107122
- Solomon, C. and Breckon, T. (2011), Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, Wiley, NJ, USA.
- Sonka, M., Hlavac, V. and Boyle, R, (2014), Image Processing, Analysis, and Machine Vision, (4th Edition), Cengage Learning, Boston, MA, USA.
- Uijlings, J., van de Sande, K., Gevers, T. and Smeulders, A. (2013), "Selective search for object recognition", Int. J. Comput. Vision, 104, 154-171. https://doi.org/10.1007/s11263-013-0620-5
- Wen, Y., Chen, Z., Zhang, G., Wang, Y., Hao, J. and Zhang Q. (2021), "A Rapid Gradation Detection System for Earth and Stone Materials Based on Digital Image", Adv. Civil Eng., 2021, 6660301. https://doi.org/10.1155/2021/6660301
- Wood, D.M. (1991), Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, UK.
- Xi, P.S., Ye, X.W., Jin, T. and Chen, B. (2018), "Structural performance monitoring of an urban footbridge", Struct. Monit. Maint., Int. J., 5(1), 129-150. https://doi.org/10.12989/smm.2018.5.1.129
- Yarahmadi, R., Bagherpour, R., Sousa, L.M.O. and Taherian, S. (2015), "How to determine the appropriate methods to identify the geometry of in situ rock blocks in dimension stones", Environ. Earth Sci., 74, 6779-6790. https://doi.org/10.1007/s12665-015-4672-4
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Zomorodian, S.M.A., Ataee Naghab, M.J., Zolghadr, M. and O'Kelly, B.C. (2020), "Overtopping erosion of model earthen dams analysed using digital image-processing method", Water Manage., 137(6), 304-316. https://doi.org/10.1680/jwama.19.00098
Cited by
- Data Envelopment Analysis Algorithm of Enterprise Economic Benefits Based on Leapfrog Algorithm vol.2021, 2021, https://doi.org/10.1155/2021/6013252