Application of an image processing-based algorithm for river-side granular sediment gradation distribution analysis |
Azarafza, Mohammad
(Department of Civil Engineering, University of Tabriz)
Nanehkaran, Yaser A. (School of Information Engineering, Jiangxi University of Science and Technology) Akgun, Haluk (Geotechnology Unit, Department of Geological Engineering, Middle East Technical University (METU)) Mao, Yimin (School of Information Engineering, Jiangxi University of Science and Technology) |
1 | Maiti, A., Chakravarty, D., Biswas, K. and Halder, A. (2017), "Development of a mass model in estimating weight-wise particle size distribution using digital image processing", Int. J. Min. Sci. Technol., 27(3), 435-443. https://doi.org/10.1016/j.ijmst.2017.03.015 DOI |
2 | Qiao, P. and Fan, W. (2014), "Lamb wave-based damage imaging method for damage detection of rectangular composite plates", Struct. Monit. Maint., Int. J., 1(4), 411-425. https://doi.org/10.12989/smm.2014.1.4.411 DOI |
3 | Shen, L., Song, X., Iguchi, M. and Yamamoto, F. (2000), "A method for recognizing particles in overlapped particle images", Pattern Recogn. Let., 21, 21-30. https://doi.org/10.1016/S0167-8655(99)00130-0 DOI |
4 | Zomorodian, S.M.A., Ataee Naghab, M.J., Zolghadr, M. and O'Kelly, B.C. (2020), "Overtopping erosion of model earthen dams analysed using digital image-processing method", Water Manage., 137(6), 304-316. https://doi.org/10.1680/jwama.19.00098 DOI |
5 | Smith, Z.D. and Maxwell, D.J. (2021), "Constructing vertical measurement logs using UAV-based photogrammetry: Applications for multiscale high-resolution analysis of coarse-grained volcaniclastic stratigraphy", J. Volcan. Geotherm. Res., 409, 107122. https://doi.org/10.1016/j.jvolgeores.2020.107122 DOI |
6 | Solomon, C. and Breckon, T. (2011), Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, Wiley, NJ, USA. |
7 | Sonka, M., Hlavac, V. and Boyle, R, (2014), Image Processing, Analysis, and Machine Vision, (4th Edition), Cengage Learning, Boston, MA, USA. |
8 | Uijlings, J., van de Sande, K., Gevers, T. and Smeulders, A. (2013), "Selective search for object recognition", Int. J. Comput. Vision, 104, 154-171. https://doi.org/10.1007/s11263-013-0620-5 DOI |
9 | Buscombe, D. and Masselink, G. (2009), "Grain size information from the statistical properties of digital images of sediment", Sediment., 56, 421-438. https://doi.org/10.1111/j.1365-3091.2008.00977.x DOI |
10 | Faramarzi, F., Mansouri, H. and Farsangi, M.E. (2013), "A rock engineering systems based model to predict rock fragmentation by blasting", Int. J. Rock. Mech. Min. Sci., 60, 82-94. https://doi.org/10.1016/j.ijrmms.2012.12.045 DOI |
11 | Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F. and Malik, J. (2017), "Multiscale combinatorial grouping for image segmentation and object proposal generation", IEEE Trans. Pattern. Anal. Mach. Intell., 39, 128-140. https://doi.org/10.1109/TPAMI.2016.2537320 DOI |
12 | Wen, Y., Chen, Z., Zhang, G., Wang, Y., Hao, J. and Zhang Q. (2021), "A Rapid Gradation Detection System for Earth and Stone Materials Based on Digital Image", Adv. Civil Eng., 2021, 6660301. https://doi.org/10.1155/2021/6660301 DOI |
13 | Wood, D.M. (1991), Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, UK. |
14 | Xi, P.S., Ye, X.W., Jin, T. and Chen, B. (2018), "Structural performance monitoring of an urban footbridge", Struct. Monit. Maint., Int. J., 5(1), 129-150. https://doi.org/10.12989/smm.2018.5.1.129 DOI |
15 | Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567 DOI |
16 | Azarafza, M. and Asghari-Kaljahi, E. (2016), Applied Geotechnical Engineering, Negarkhane Publication, Isfahan, Iran. [in Persian] |
17 | Yarahmadi, R., Bagherpour, R., Sousa, L.M.O. and Taherian, S. (2015), "How to determine the appropriate methods to identify the geometry of in situ rock blocks in dimension stones", Environ. Earth Sci., 74, 6779-6790. https://doi.org/10.1007/s12665-015-4672-4 DOI |
18 | Carlsson, O. and Nyberg, L. (1981), "A method for estimation of fragment size distribution with automatic image processing", Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting, Roger Holmberg, August. |
19 | AASHTO T88 (2013), Standard Method of Test for Particle Size Analysis of Soils, American Association of State Highway and Transportation Officials, Washington, USA. |
20 | ASTM D422 (2006), Standard test methods for particle size analysis of soils, ASTM International, West Conshohocken, PA, USA |
21 | Azarafza, M., Feizi-Derakhshi, M.R. and Jeddi, A. (2017), "Blasting pattern optimization in open-pit mines by using the genetic algorithm", J. Geotech. Geol., 13(2), 75-81. |
22 | Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2019), "Development of a 2D and 3D computational algorithm for discontinuity structural geometry identification by artificial intelligence based on image processing techniques", Bull. Eng. Geol. Environ., 78(5), 3371-3383. DOI |
23 | Barnard, P.L., Rubin, D.M., Harney, J. and Mustain, N. (2007), "Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods", Sediment. Geol., 201, 180-195. https://doi.org/10.1016/j.sedgeo.2007.05.016 DOI |
24 | Becker, L.W.M., Hjelstuen, B.O., Storen, E.W.N. and Sejrup, H.P. (2018), "Automated counting of sand-sized particles in marine records", Sediment. Banner, 65(3), 842-850. https://doi.org/10.1111/sed.12407 DOI |
25 | Charpentier, I., Sarocchi, D. and Sedano, L.A.R. (2013), "Particle shape analysis of volcanic clast samples with the Matlab tool MORPHEO", Comput. Geosci., 51, 172-181. https://doi.org/10.1016/j.cageo.2012.07.015 DOI |
26 | Boggs Jr, S. (2011), Principles of Sedimentology and Stratigraphy, Pearson, New York, NY, USA. |
27 | Budhu, M. (2010), Soil Mechanics and Foundations, (3rd Edition), Wiley, New Jersey, USA. |
28 | Buscombe, D. (2008), "Estimation of grain-size distributions and associated parameters from digital images of sediment", Sediment. Geol., 210, 1-10. https://doi.org/10.1016/j.sedgeo.2008.06.007 DOI |
29 | Frydrych, M., Rdzany, Z. and Petera-Zganiacz, J. (2019), "The problem of analysing grain size distribution in fluvioglacial coarse-grained sediments", Proceedings of the State International Field Symposium of the Peribaltic Working Group, Greifswald, Germany, September. |
30 | Cassel, M., Piegay, H., Lave, J., Vaudor, L., Hadmoko, S.D., Budi, S.W. and Lavigne, F. (2018), "Evaluating a 2D image-based computerized approach for measuring riverine pebble roundness", Geomorph., 311, 143-157. https://doi.org/10.1016/j.geomorph.2018.03.020 DOI |
31 | Chavez, G.M., Sarocchi, D., Arce Santana, E. and Borselli, L. (2015), "Optical granulometric analysis of sedimentary deposits by color segmentation-based software: OPTGRAN-CS", Comput. Geosci., 85(A), 248-257. https://doi.org/10.1016/j.cageo.2015.09.007 DOI |
32 | Chen, T., Kuo, C.F. and Chen, J.C.Y. (2019), "Computer vision monitoring and detection for landslides", Struct. Monit. Maint., Int. J., 6(2), 161-171. https://doi.org/10.12989/smm.2019.6.2.161 DOI |
33 | Davies, E.R. (2012), Computer and Machine Vision: Theory, Algorithms, Practicalities, (4th Edition), Academic Press, MA, USA. |
34 | Dill, H.G., Buzatu, A., Balaban, S.J., Ufer, K., Techmer, A., Schedlinsky, W. and Fussl, M. (2020), "The transition of very coarse-grained meandering to straight fluvial drainage systems in a tectonized foreland-basement landscape during the Holocene (SE Germany) - A joint geomorphological-geological study", Geomorphology, 370, 107364. https://doi.org/10.1016/j.geomorph.2020.107364 DOI |
35 | Korath, J., Abbas, A. and Romagnoli, J. (2007), "Separating touching and overlapping objects in particle images - A combined approach", Chem. Eng. Trans., 11, 167-172. |
36 | Dipova, N. (2017), "Determining the grain size distribution of granular soils using image analysis", Acta Geotech. Slovenica, 14(1), 29-37. |
37 | Gonzalez, R.C., Woods, R.E. and Steven, L. (2010), Digital Image Processing using MATLAB, (2nd Edition), McGraw-Hill Education, New York, NY, USA. |
38 | Griffiths, J.C. (1961), "Measurement and properties of sediments", J. Geol., 69, 487-498. https://doi.org/10.1086/626767 DOI |
39 | Rubin, D.M. (2004), "A simple autocorrelation algorithm for determining grain size from digital images of sediment", J. Sediment. Res., 74, 160-165. https://doi.org/10.1306/052203740160 DOI |
40 | Honakanen, M., Saarenrinne, P., Stoor, T. and Niinimaki, J. (2005), "Recognition of highly overlapping ellipse-like bubble images", Measur. Sci. Technol., 16, 1760-1770. https://doi.org/10.1088/0957-0233/16/9/007 DOI |
41 | Krishna, B.M., Tezeswi, T.P., Kumar, P.R., Gopikrishna, K., Sivakumar, M.V.N. and Shashi, M. (2019), "QR code as speckle pattern for reinforced concrete beams using digital image correlation", Struct. Monit. Maint., Int. J., 6(1), 67-84. https://doi.org/10.12989/smm.2019.6.1.067 DOI |
42 | Latham, J.P., Kemeny, J., Maerz, N., Noy, M., Schlifer, J. and Tose, S. (2003), "A blind comparison between results of four image analysis systems using a photo-library of piles of sieved fragments", Int. J. Rock. Fragment. Blast., 7(2), 105-132. |
43 | Liu, Y., Nadolski, S., Elmo, D., Klein, B. and Scoble, M. (2015), "Use of digital imaging processing techniques to characterize block caving secondary fragmentation and implications for proposed cave-to-mill approach", Proceedings of the 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, June. |