DOI QR코드

DOI QR Code

Sorption behavior of Eu(III) on Tamusu clay under strong ionic strength: Batch experiments and BSE/EDS analysis

  • Zhang, Han (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • He, Hanyi (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Liu, Jun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Li, Honghui (China Institute for Radiation Protection) ;
  • Zhao, Shuaiwei (China Institute for Radiation Protection) ;
  • Jia, Meilan (China Institute for Radiation Protection) ;
  • Yang, Jijun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Liu, Ning (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yang, Yuanyou (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Liao, Jiali (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
  • Received : 2020.04.01
  • Accepted : 2020.06.05
  • Published : 2021.01.25

Abstract

The europium sorption on Tamusu clay was investigated by batch sorption experiments and spectroscopic study under the condition of strong ionic strength. The results demonstrated that europium sorption on Tamusu clay increased rapidly with pH value, but decreased with the ionic strength of solution increased. The europium sorption also increased in the presence of humic acid, especially at low pH value. The sorption could be fitted by Freundlich isotherm model and the europium sorption on clay was spontaneous and endothermic reaction. Besides, the result indicates that ion exchange was the main process at low pH value, while inner-sphere surface complexation dominated the sorption process at high pH value. The Backscatter electron scanning/Energy Dispersive Spectrometer(BSE/EDS) and the effect of Na for europium sorption results further suggested that europium sorption on Tamusu clay mainly competed with Na at low pH value. Overall, the results in this research were of significance to understand the sorption behavior of europium on the geological media under high ionic strength.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 21876123) and the National Fund of China for Fostering Talents in Basic Science (J1210004).

References

  1. S.C. Tsai, T.-H. Wang, M.-H. Li, Y.-Y. Wei, S.-P. Teng, Cesium adsorption and distribution onto crushed granite under different physicochemical conditions, J. Hazard Mater. 161 (2009) 854-861. https://doi.org/10.1016/j.jhazmat.2008.04.044
  2. N. Maes, S. Salah, D. Jacques, M. Aertsens, M.V. Gompel, P.D. Canniere, N. Velitchkova, Retention of Cs in Boom Clay: comparison of data from batch sorption tests and diffusion experiments on intact clay cores, Phys. Chem. Earth 33 (2008) S149-S155. https://doi.org/10.1016/j.pce.2008.10.002
  3. M.A. Glaus, B. Baeyens, M. Lauber, T. Rabung, L.R. Van Loon, Influence of water-extractable organic matter from Opalinus Clay on the sorption and speciation of Ni(II), Eu(III) and Th(IV), Appl. Geochem. 20 (2005) 443-451. https://doi.org/10.1016/j.apgeochem.2004.09.004
  4. T. Siren, M. Hakala, J. Valli, P. Kantia, J. Hudson, E. Johansson, In situ strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland, Int. J. Rock Mech. Min. Sci. 79 (2015) 135-148. https://doi.org/10.1016/j.ijrmms.2015.08.012
  5. I. Deniau, I. Devol-Brown, S. Derenne, F. Behar, C. Largeau, Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories, Sci. Total Environ. 389 (2008) 475-485. https://doi.org/10.1016/j.scitotenv.2007.09.013
  6. Q. Jin, G. Wang, M. Ge, Z. Chen, W. Wu, Z. Guo, The adsorption of Eu(III) and Am(III) on Beishan granite: XPS, EPMA, batch and modeling study, Appl. Geochem. 47 (2014) 17-24. https://doi.org/10.1016/j.apgeochem.2014.05.004
  7. H. He, J. Liu, Y. Dong, H. Li, S. Zhao, J. Wang, M. Jia, H. Zhang, J. Liao, J. Yang, Y. Yang, N. Liu, Sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions, J. Environ. Radioact. 203 (2019) 210-219. https://doi.org/10.1016/j.jenvrad.2019.03.020
  8. X. Tan, M. Fang, J. Li, Y. Lu, X. Wang, Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid, J. Hazard Mater. 168 (2009) 458-465. https://doi.org/10.1016/j.jhazmat.2009.02.051
  9. K. Fukushi, Y. Hasegawa, K. Maeda, Y. Aoi, A. Tamura, S. Arai, Y. Yamamoto, D. Aosai, T. Mizuno, Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies, Environ. Sci. Technol. 47 (2013) 12811-12818. https://doi.org/10.1021/es402676n
  10. M.H. Bradbury, B. Baeyens, Experimental measurements and modeling of sorption competition on montmorillonite, Geochem. Cosmochim. Acta 69 (2005) 4187-4197. https://doi.org/10.1016/j.gca.2005.04.014
  11. V.A. Sinitsyn, S.U. Aja, D.A. Kulik, S.A. Wood, Acid-base surface chemistry and sorption of some lanthanides on K +-saturated Marblehead illite: I. results of an experimental investigation, Geochem. Cosmochim. Acta 64 (2000) 185-194. https://doi.org/10.1016/S0016-7037(99)00175-1
  12. T. Rabung, H. Geckeis, J.-I. Kim, H.P. Beck, Sorption of Eu(III) on a natural hematite: application of a surface complexation model, J. Colloid Interface Sci. 208 (1998) 153-161. https://doi.org/10.1006/jcis.1998.5788
  13. M.H. Bradbury, B. Baeyens, Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modeling with cation exchange and surface complexation, Geochem. Cosmochim. Acta 66 (2002) 2325-2334. https://doi.org/10.1016/S0016-7037(02)00841-4
  14. Y. Takahashi, T. Kimura, Y. Kato, Y. Minai, Speciation of europium(III) sorbed on a montmorillonite surface in the presence of polycarboxylic acid by laserinduced fluorescence spectroscopy, Environ. Sci. Technol. 33 (1999) 4016-4021. https://doi.org/10.1021/es990037n
  15. X. Wang, Y. Sun, A. Alsaedi, T. Hayat, X. Wang, Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques, Chem. Eng. J. 264 (2015) 570-576. https://doi.org/10.1016/j.cej.2014.11.136
  16. X.L. Tan, X.K. Wang, H. Geckeis, T. Rabung, Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques, Environ. Sci. Technol. 42 (2008) 6532-6537. https://doi.org/10.1021/es8007062
  17. M. Bouby, J. Lutzenkirchen, K. Dardenne, T. Preocanin, M.A. Denecke, R. Klenze, H. Geckeis, Sorption of Eu(III) onto titanium dioxide: measurements and modeling, J. Colloid Interface Sci. 350 (2010) 551-561. https://doi.org/10.1016/j.jcis.2010.06.060
  18. M.H. Bradbury, B. Baeyens, H. Geckeis, T. Rabung, Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: surface complexation modelling, Geochem. Cosmochim. Acta 69 (2005) 5403-5412. https://doi.org/10.1016/j.gca.2005.06.031
  19. Z. Guo, J. Xu, K. Shi, Y. Tang, W. Wu, Z. Tao, Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies, Colloid. Surface. Physicochem. Eng. Aspect. 339 (2009) 126-133. https://doi.org/10.1016/j.colsurfa.2009.02.007
  20. A. Schnurr, R. Marsac, T. Rabung, J. Lutzenkirchen, H. Geckeis, Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling, Geochem. Cosmochim. Acta 151 (2015) 192-202. https://doi.org/10.1016/j.gca.2014.11.011
  21. T. Yu, W.-S. Wu, Z.-R. Liu, S.-W. Zhang, Z.-W. Nie, Kinetic and thermodynamic study of Eu(III) sorption on natural red earth in South China, Kor. J. Chem. Eng. 30 (2012) 440-447. https://doi.org/10.1007/s11814-012-0130-0
  22. Q.H. Fan, M.L. Zhang, Y.Y. Zhang, K.F. Ding, Z.Q. Yang, W.S. Wu, Sorption of Eu(III) and Am(III) on attapulgite: effect of pH, ionic strength and fulvic acid, Radiochim. Acta 98 (2010) 19-25.
  23. D. Garcia, J. Lutzenkirchen, V. Petrov, M. Siebentritt, D. Schild, G. Lefevre, T. Rabung, M. Altmaier, S. Kalmykov, L. Duro, SORPTION OF Eu (III) ON QUARTZ AT HIGH SALT CONCENTRATIONS, Colloid. Surface. Physicochem. Eng. Aspect. (2019), https://doi.org/10.1016/j.colsurfa.2019.123610.
  24. P.K. Verma, A.S. Semenkova, V.V. Krupskaya, S.V. Zakusin, P.K. Mohapatra, A.Y. Romanchuk, S.N. Kalmykov, Eu (III) sorption onto various montmorillonites: experiments and modeling, Appl. Clay Sci. 175 (2019) 22-29. https://doi.org/10.1016/j.clay.2019.03.001
  25. L. Songsheng, X. Hua, W. Mingming, S. Xiaoping, L. Qiong, Sorption of Eu (III) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid, J. Radioanal. Nucl. Chem. 292 (2011) 889-895. https://doi.org/10.1007/s10967-011-1532-x
  26. E. Tertre, G. Berger, E. Simoni, S. Castet, E. Giffaut, M. Loubet, H. Catalette, Europium retention onto clay minerals from 25 to 150 C: experimental measurements, spectroscopic features and sorption modelling, Geochem. Cosmochim. Acta 70 (2006) 4563-4578. https://doi.org/10.1016/j.gca.2006.06.1568
  27. Z. Chen, J. He, L. Chen, S. Lu, Sorption and desorption properties of Eu (III) on attapulgite, J. Radioanal. Nucl. Chem. 307 (2016) 1093-1104. https://doi.org/10.1007/s10967-015-4252-9
  28. K. Fukushi, Y. Hasegawa, K. Maeda, Y. Aoi, A. Tamura, S. Arai, Y. Yamamoto, D. Aosai, T. Mizuno, Sorption of Eu (III) on granite: EPMA, LA-ICP-MS, batch and modeling studies, Environ. Sci. Technol. 47 (2013) 12811. https://doi.org/10.1021/es402676n
  29. T. Rabung, M.C. Pierret, A. Bauer, H. Geckeis, M.H. Bradbury, B. Baeyens, Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments, Geochem. Cosmochim. Acta 69 (2005) 5393-5402. https://doi.org/10.1016/j.gca.2005.06.030
  30. J.A. Davis, J.A. Coston, D.B. Kent, C.C. Fuller, Application of the surface complexation concept to complex mineral assemblages, Environ. Sci. Technol. 32 (1998) 2820-2828. https://doi.org/10.1021/es980312q
  31. K. Ishida, T. Kimura, T. Saito, S. Tanaka, Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM), Environ. Sci. Technol. 43 (2009) 1744-1749. https://doi.org/10.1021/es8024287
  32. S. Holgersson, Studies on batch sorption methodologies: Eu sorption onto kivetty granite, Procedia Chem. 7 (2012) 629-640. https://doi.org/10.1016/j.proche.2012.10.096
  33. Q. Jin, G. Wang, M. Ge, Z. Chen, W. Wu, Z. Guo, The adsorption of Eu(III) and Am(III) on Beishan granite: XPS, EPMA, batch and modeling study, Appl. Geochem. 47 (2014) 17-24. https://doi.org/10.1016/j.apgeochem.2014.05.004
  34. M.A. Glaus, B. Baeyens, M. Lauber, T. Rabung, L.R.V. Loon, Influence of water-extractable organic matter from Opalinus Clay on the sorption and speciation of Ni(II), Eu(III) and Th(IV), Appl. Geochem. 20 (2005) 443-451. https://doi.org/10.1016/j.apgeochem.2004.09.004
  35. M.H. Bradbury, B. Baeyens, A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part II: Modelling, J. Contam. Hydrol. 27 (1997) 223-248. https://doi.org/10.1016/S0169-7722(97)00007-7
  36. M.H. Bradbury, B. Baeyens, Sorption modelling on illite Part I: titration measurements and the sorption of Ni, Co, Eu and Sn, Geochem. Cosmochim. Acta 73 (2009) 990-1003. https://doi.org/10.1016/j.gca.2008.11.017
  37. H. Zhang, Y. Dong, H. He, H. Li, S. Zhao, J. Liu, M. Jia, J. Yang, Y. Yang, N. Liu, J. Liao, Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength, Radiochim. Acta (2019), https://doi.org/10.1515/ract-2019-3161.
  38. A.B. Albadarin, C. Mangwandi, A.a.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J. 179 (2012) 193-202. https://doi.org/10.1016/j.cej.2011.10.080
  39. J. Ji, Y. Ge, W. Balsam, J.E. Damuth, J. Chen, Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308, Mar. Geol. 258 (2009) 60-68. https://doi.org/10.1016/j.margeo.2008.11.007
  40. L.A. Rodrigues, M.L.C.P.d. Silva, Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method, Desalination 263 (2010) 29-35. https://doi.org/10.1016/j.desal.2010.06.030
  41. S.N. Azizi, M. Yousefpour, Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template, J. Mater. Sci. 45 (2010) 5692-5697. https://doi.org/10.1007/s10853-010-4637-7
  42. Q. Fan, L. Hao, C. Wang, Z. Zheng, C. Liu, W. Wu, The adsorption behavior of U (VI) on granite, Environ. Sci.-Process Impacts 16 (2014) 534-541. https://doi.org/10.1039/c3em00324h
  43. Q.H. Fan, J.Z. Xu, Z.W. Niu, P. Li, W.S. Wu, Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques, Appl. Radiat. Isot. 70 (2012) 13-19. https://doi.org/10.1016/j.apradiso.2011.07.004
  44. S. Lofts, E.W. Tipping, A.L. Sanchez, B.A. Dodd, Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil, J. Environ. Radioact. 61 (2002) 133-147. https://doi.org/10.1016/S0265-931X(01)00118-7
  45. F. Li, D. Li, X. Li, J. Liao, J. Yang, Y. Yang, J. Tang, N. Liu, Microorganism-derived carbon microspheres for uranium removal from aqueous solution, Chem. Eng. J. 284 (2016) 630-639. https://doi.org/10.1016/j.cej.2015.09.015
  46. C. Zhao, J. Liu, Y. Deng, Y. Tian, G. Zhang, J. Liao, J. Yang, Y. Yang, N. Liu, Q. Sun, Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach, J. Clean. Prod. 236 (2019) 117624. https://doi.org/10.1016/j.jclepro.2019.117624
  47. J. Liu, C. Zhao, J. Wang, H. He, G. Yuan, H. Wang, J. Yang, J. Liao, Y. Yang, N. Liu, Adsorption of U (VI) from eutrophic aquesous solutions in a U (VI)-P-CO3 system with hydrous titanium dioxide supported by polyacrylonitrile fiber, Hydrometallurgy 183 (2019) 29-37. https://doi.org/10.1016/j.hydromet.2018.11.009
  48. J. Schott, M. Acker, A. Barkleit, V. Brendler, S. Taut, G. Bernhard, The influence of temperature and small organic ligands on the sorption of Eu(III) on Opalinus Clay, Radiochim. Acta 100 (2012) 315-324. https://doi.org/10.1524/ract.2012.1921