Browse > Article
http://dx.doi.org/10.1016/j.net.2020.06.009

Sorption behavior of Eu(III) on Tamusu clay under strong ionic strength: Batch experiments and BSE/EDS analysis  

Zhang, Han (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
He, Hanyi (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Liu, Jun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Li, Honghui (China Institute for Radiation Protection)
Zhao, Shuaiwei (China Institute for Radiation Protection)
Jia, Meilan (China Institute for Radiation Protection)
Yang, Jijun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Liu, Ning (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Yang, Yuanyou (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Liao, Jiali (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Publication Information
Nuclear Engineering and Technology / v.53, no.1, 2021 , pp. 164-171 More about this Journal
Abstract
The europium sorption on Tamusu clay was investigated by batch sorption experiments and spectroscopic study under the condition of strong ionic strength. The results demonstrated that europium sorption on Tamusu clay increased rapidly with pH value, but decreased with the ionic strength of solution increased. The europium sorption also increased in the presence of humic acid, especially at low pH value. The sorption could be fitted by Freundlich isotherm model and the europium sorption on clay was spontaneous and endothermic reaction. Besides, the result indicates that ion exchange was the main process at low pH value, while inner-sphere surface complexation dominated the sorption process at high pH value. The Backscatter electron scanning/Energy Dispersive Spectrometer(BSE/EDS) and the effect of Na for europium sorption results further suggested that europium sorption on Tamusu clay mainly competed with Na at low pH value. Overall, the results in this research were of significance to understand the sorption behavior of europium on the geological media under high ionic strength.
Keywords
Europium; Sorption behavior; Tamusu clay; Strong ionic strength; Ion exchange;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Fukushi, Y. Hasegawa, K. Maeda, Y. Aoi, A. Tamura, S. Arai, Y. Yamamoto, D. Aosai, T. Mizuno, Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies, Environ. Sci. Technol. 47 (2013) 12811-12818.   DOI
2 M.H. Bradbury, B. Baeyens, Experimental measurements and modeling of sorption competition on montmorillonite, Geochem. Cosmochim. Acta 69 (2005) 4187-4197.   DOI
3 V.A. Sinitsyn, S.U. Aja, D.A. Kulik, S.A. Wood, Acid-base surface chemistry and sorption of some lanthanides on K +-saturated Marblehead illite: I. results of an experimental investigation, Geochem. Cosmochim. Acta 64 (2000) 185-194.   DOI
4 J. Ji, Y. Ge, W. Balsam, J.E. Damuth, J. Chen, Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308, Mar. Geol. 258 (2009) 60-68.   DOI
5 L.A. Rodrigues, M.L.C.P.d. Silva, Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method, Desalination 263 (2010) 29-35.   DOI
6 S.N. Azizi, M. Yousefpour, Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template, J. Mater. Sci. 45 (2010) 5692-5697.   DOI
7 Q.H. Fan, J.Z. Xu, Z.W. Niu, P. Li, W.S. Wu, Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques, Appl. Radiat. Isot. 70 (2012) 13-19.   DOI
8 S. Holgersson, Studies on batch sorption methodologies: Eu sorption onto kivetty granite, Procedia Chem. 7 (2012) 629-640.   DOI
9 S. Lofts, E.W. Tipping, A.L. Sanchez, B.A. Dodd, Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil, J. Environ. Radioact. 61 (2002) 133-147.   DOI
10 F. Li, D. Li, X. Li, J. Liao, J. Yang, Y. Yang, J. Tang, N. Liu, Microorganism-derived carbon microspheres for uranium removal from aqueous solution, Chem. Eng. J. 284 (2016) 630-639.   DOI
11 J. Schott, M. Acker, A. Barkleit, V. Brendler, S. Taut, G. Bernhard, The influence of temperature and small organic ligands on the sorption of Eu(III) on Opalinus Clay, Radiochim. Acta 100 (2012) 315-324.   DOI
12 E. Tertre, G. Berger, E. Simoni, S. Castet, E. Giffaut, M. Loubet, H. Catalette, Europium retention onto clay minerals from 25 to 150 C: experimental measurements, spectroscopic features and sorption modelling, Geochem. Cosmochim. Acta 70 (2006) 4563-4578.   DOI
13 Z. Chen, J. He, L. Chen, S. Lu, Sorption and desorption properties of Eu (III) on attapulgite, J. Radioanal. Nucl. Chem. 307 (2016) 1093-1104.   DOI
14 T. Rabung, M.C. Pierret, A. Bauer, H. Geckeis, M.H. Bradbury, B. Baeyens, Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments, Geochem. Cosmochim. Acta 69 (2005) 5393-5402.   DOI
15 K. Ishida, T. Kimura, T. Saito, S. Tanaka, Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM), Environ. Sci. Technol. 43 (2009) 1744-1749.   DOI
16 T. Siren, M. Hakala, J. Valli, P. Kantia, J. Hudson, E. Johansson, In situ strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland, Int. J. Rock Mech. Min. Sci. 79 (2015) 135-148.   DOI
17 C. Zhao, J. Liu, Y. Deng, Y. Tian, G. Zhang, J. Liao, J. Yang, Y. Yang, N. Liu, Q. Sun, Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach, J. Clean. Prod. 236 (2019) 117624.   DOI
18 S.C. Tsai, T.-H. Wang, M.-H. Li, Y.-Y. Wei, S.-P. Teng, Cesium adsorption and distribution onto crushed granite under different physicochemical conditions, J. Hazard Mater. 161 (2009) 854-861.   DOI
19 N. Maes, S. Salah, D. Jacques, M. Aertsens, M.V. Gompel, P.D. Canniere, N. Velitchkova, Retention of Cs in Boom Clay: comparison of data from batch sorption tests and diffusion experiments on intact clay cores, Phys. Chem. Earth 33 (2008) S149-S155.   DOI
20 M.A. Glaus, B. Baeyens, M. Lauber, T. Rabung, L.R. Van Loon, Influence of water-extractable organic matter from Opalinus Clay on the sorption and speciation of Ni(II), Eu(III) and Th(IV), Appl. Geochem. 20 (2005) 443-451.   DOI
21 I. Deniau, I. Devol-Brown, S. Derenne, F. Behar, C. Largeau, Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories, Sci. Total Environ. 389 (2008) 475-485.   DOI
22 X.L. Tan, X.K. Wang, H. Geckeis, T. Rabung, Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques, Environ. Sci. Technol. 42 (2008) 6532-6537.   DOI
23 Q. Jin, G. Wang, M. Ge, Z. Chen, W. Wu, Z. Guo, The adsorption of Eu(III) and Am(III) on Beishan granite: XPS, EPMA, batch and modeling study, Appl. Geochem. 47 (2014) 17-24.   DOI
24 X. Tan, M. Fang, J. Li, Y. Lu, X. Wang, Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid, J. Hazard Mater. 168 (2009) 458-465.   DOI
25 J. Liu, C. Zhao, J. Wang, H. He, G. Yuan, H. Wang, J. Yang, J. Liao, Y. Yang, N. Liu, Adsorption of U (VI) from eutrophic aquesous solutions in a U (VI)-P-CO3 system with hydrous titanium dioxide supported by polyacrylonitrile fiber, Hydrometallurgy 183 (2019) 29-37.   DOI
26 J.A. Davis, J.A. Coston, D.B. Kent, C.C. Fuller, Application of the surface complexation concept to complex mineral assemblages, Environ. Sci. Technol. 32 (1998) 2820-2828.   DOI
27 T. Rabung, H. Geckeis, J.-I. Kim, H.P. Beck, Sorption of Eu(III) on a natural hematite: application of a surface complexation model, J. Colloid Interface Sci. 208 (1998) 153-161.   DOI
28 M.H. Bradbury, B. Baeyens, Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modeling with cation exchange and surface complexation, Geochem. Cosmochim. Acta 66 (2002) 2325-2334.   DOI
29 Y. Takahashi, T. Kimura, Y. Kato, Y. Minai, Speciation of europium(III) sorbed on a montmorillonite surface in the presence of polycarboxylic acid by laserinduced fluorescence spectroscopy, Environ. Sci. Technol. 33 (1999) 4016-4021.   DOI
30 X. Wang, Y. Sun, A. Alsaedi, T. Hayat, X. Wang, Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques, Chem. Eng. J. 264 (2015) 570-576.   DOI
31 M.H. Bradbury, B. Baeyens, H. Geckeis, T. Rabung, Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: surface complexation modelling, Geochem. Cosmochim. Acta 69 (2005) 5403-5412.   DOI
32 M. Bouby, J. Lutzenkirchen, K. Dardenne, T. Preocanin, M.A. Denecke, R. Klenze, H. Geckeis, Sorption of Eu(III) onto titanium dioxide: measurements and modeling, J. Colloid Interface Sci. 350 (2010) 551-561.   DOI
33 H. He, J. Liu, Y. Dong, H. Li, S. Zhao, J. Wang, M. Jia, H. Zhang, J. Liao, J. Yang, Y. Yang, N. Liu, Sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions, J. Environ. Radioact. 203 (2019) 210-219.   DOI
34 P.K. Verma, A.S. Semenkova, V.V. Krupskaya, S.V. Zakusin, P.K. Mohapatra, A.Y. Romanchuk, S.N. Kalmykov, Eu (III) sorption onto various montmorillonites: experiments and modeling, Appl. Clay Sci. 175 (2019) 22-29.   DOI
35 L. Songsheng, X. Hua, W. Mingming, S. Xiaoping, L. Qiong, Sorption of Eu (III) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid, J. Radioanal. Nucl. Chem. 292 (2011) 889-895.   DOI
36 H. Zhang, Y. Dong, H. He, H. Li, S. Zhao, J. Liu, M. Jia, J. Yang, Y. Yang, N. Liu, J. Liao, Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength, Radiochim. Acta (2019), https://doi.org/10.1515/ract-2019-3161.   DOI
37 Q. Fan, L. Hao, C. Wang, Z. Zheng, C. Liu, W. Wu, The adsorption behavior of U (VI) on granite, Environ. Sci.-Process Impacts 16 (2014) 534-541.   DOI
38 Z. Guo, J. Xu, K. Shi, Y. Tang, W. Wu, Z. Tao, Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies, Colloid. Surface. Physicochem. Eng. Aspect. 339 (2009) 126-133.   DOI
39 K. Fukushi, Y. Hasegawa, K. Maeda, Y. Aoi, A. Tamura, S. Arai, Y. Yamamoto, D. Aosai, T. Mizuno, Sorption of Eu (III) on granite: EPMA, LA-ICP-MS, batch and modeling studies, Environ. Sci. Technol. 47 (2013) 12811.   DOI
40 D. Garcia, J. Lutzenkirchen, V. Petrov, M. Siebentritt, D. Schild, G. Lefevre, T. Rabung, M. Altmaier, S. Kalmykov, L. Duro, SORPTION OF Eu (III) ON QUARTZ AT HIGH SALT CONCENTRATIONS, Colloid. Surface. Physicochem. Eng. Aspect. (2019), https://doi.org/10.1016/j.colsurfa.2019.123610.   DOI
41 M.H. Bradbury, B. Baeyens, Sorption modelling on illite Part I: titration measurements and the sorption of Ni, Co, Eu and Sn, Geochem. Cosmochim. Acta 73 (2009) 990-1003.   DOI
42 Q. Jin, G. Wang, M. Ge, Z. Chen, W. Wu, Z. Guo, The adsorption of Eu(III) and Am(III) on Beishan granite: XPS, EPMA, batch and modeling study, Appl. Geochem. 47 (2014) 17-24.   DOI
43 M.A. Glaus, B. Baeyens, M. Lauber, T. Rabung, L.R.V. Loon, Influence of water-extractable organic matter from Opalinus Clay on the sorption and speciation of Ni(II), Eu(III) and Th(IV), Appl. Geochem. 20 (2005) 443-451.   DOI
44 M.H. Bradbury, B. Baeyens, A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part II: Modelling, J. Contam. Hydrol. 27 (1997) 223-248.   DOI
45 A.B. Albadarin, C. Mangwandi, A.a.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J. 179 (2012) 193-202.   DOI
46 Q.H. Fan, M.L. Zhang, Y.Y. Zhang, K.F. Ding, Z.Q. Yang, W.S. Wu, Sorption of Eu(III) and Am(III) on attapulgite: effect of pH, ionic strength and fulvic acid, Radiochim. Acta 98 (2010) 19-25.
47 A. Schnurr, R. Marsac, T. Rabung, J. Lutzenkirchen, H. Geckeis, Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling, Geochem. Cosmochim. Acta 151 (2015) 192-202.   DOI
48 T. Yu, W.-S. Wu, Z.-R. Liu, S.-W. Zhang, Z.-W. Nie, Kinetic and thermodynamic study of Eu(III) sorption on natural red earth in South China, Kor. J. Chem. Eng. 30 (2012) 440-447.   DOI