DOI QR코드

DOI QR Code

Evaluation of the true-strength characteristics for isotropic materials using ring tensile test

  • Frolov, A.S. (National Research Center "Kurchatov Institute") ;
  • Fedotov, I.V. (National Research Center "Kurchatov Institute") ;
  • Gurovich, B.A. (National Research Center "Kurchatov Institute")
  • Received : 2020.08.06
  • Accepted : 2021.01.28
  • Published : 2021.07.25

Abstract

The paper proposes a technique for reconstructing the true hardening curve of isotropic materials from ring tensile tests. Neutron irradiated 42XNM alloy tensile properties were investigated. The calculation of the true hardening curve for tensile and compression tests of standard cylindrical samples was performed at the first step. After that, the FEM-model was developed and validated using the ring tension and compression tests (with the hardening curve defined in step 1). Finally, the true hardening curve was calculated by selecting the FEM-model parameters and its validation by ring sample tests in different states using an iterative method. For these samples, experimental and calculated gauge length values were obtained, and the corresponding material's constants were estimated.

Keywords

Acknowledgement

The authors wish to thank Dr. E.A. Kuleshova for her advice and counsel. Thanks are also due to I.V. Kozlov for DIC-sample preparation.

References

  1. J. Desquines, D.A. Koss, A.T. Motta, B. Cazalis, M. Petit, The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA), J. Nucl. Mater. 412 (2011) 250-267, https://doi.org/10.1016/j.jnucmat.2011.03.015.
  2. J. Yoon, J. Kim, H. Kim, C. Won, Y. Song, S.H. Park, Calibration of hoop stress in ring tensile test with Zircaloy-4 tube, J. Mech. Sci. Technol. 31 (2017) 4183-4188, https://doi.org/10.1007/s12206-017-0815-8.
  3. F. Nagase, T. Sugiyama, T. Fuketa, Optimized ring tensile test method and hydrogen effect on mechanical properties of zircaloy cladding in hoop direction, J. Nucl. Sci. Technol. 46 (2009) 545-552, https://doi.org/10.1080/18811248.2007.9711560.
  4. M. Kiraly, D.M. Antok, L. Horvath, Z. Hozer, Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes, Nucl. Eng. Technol. 50 (2018) 425-431, https://doi.org/10.1016/j.net.2018.01.002.
  5. Nindiyasari F., Pierick P.T.E.R., Boomstra D., Pandit A.M., Ring tensile test of reference zircaloy cladding tube as a proof of principle for hotcell setup, TopFuel-2018 Conf (30.09.2018-04.10.2018), 211481815.
  6. M.A. Martin-Rengel, F.J. Gomez Sanchez, J. Ruiz-Hervias, L. Caballero, A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, J. Nucl. Mater. 429 (2012) 276-283, https://doi.org/10.1016/j.jnucmat.2012.06.003.
  7. L. Yegorova, Database on the Behavior of High Burnup Fuel Rods with Zr1%Nb Cladding and UO2 Fuel (VVER Type) under Reactivity Accident Conditions vol. 2, NUREG/IA-0156, July 1999.
  8. S. Holmstrom, M. Bruchhausen, K.-F. Nilsson, Test methodologies for determining high temperature material properties of thin walled tubes EERA JPNM Pilot project TASTE. https://doi.org/10.2760/702821, 2017.
  9. E. Campitelli, P. Spatig, Assessment of Mechanical Properties in Unirradiated and Irradiated Zircaloys and Steels with Non-standard Tests and Finite Element Calculations, EPFL, Lausanne, 2005, https://doi.org/10.5075/epflthesis-3304.
  10. J. Ik, Y. Jung, G. Kim, J. Myun, J. Dong, J. Lee, H. Jae, J. Mehrdad, S.S. Lee, H.S. Kim, Obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile testing obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile T. https://doi.org/10.3365/KJMM.2016.54.4.231, 2016.
  11. M. Quanjin, M.R.M. Rejab, Q. Halim, M.N.M. Merzuki, M.A.H. Darus, Experimental investigation of the tensile test using digital image correlation (DIC) method, Mater, Today Proc 27 (2020) 757-763, https://doi.org/10.1016/j.matpr.2019.12.072.
  12. A. Racine, M. Bornert, C. Cappelaere, D. Caldemaison, Experimental investigation of strain, damage and failure of hydrided Zircaloy-4 with various hydrides orientations, Proc. 18th Int. Conf. Struct. Mech. React. Technol. 43-12 (2005) 430.
  13. T.B. Massalski, Editor-in-Chief, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams-, second ed. vol. 3, ASM International, Materials Park, Ohio, USA, December 1990, p. 3589.
  14. Deutsche Gesellschaft fur Metallkunde, Zeitschrift Fur Metallkunde., RiedererVerlag, 1948.
  15. B.A. Gurovich, A.S. Frolov, I.V. Fedotov, Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500-1100)℃, Nucl. Eng. Technol. 52 (2020) 1213-1221, https://doi.org/10.1016/j.net.2019.11.019.
  16. Iso 6892-1. Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature.
  17. Y. Wang, S. Xu, S. Ren, H. Wang, An Experimental-Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking, 2016, p. 2016.
  18. H.J. Kleemola, M.A. Nieminen, On the strain-hardening parameters of metals, Metall. Trans. 5 (1974) 1863-1866, https://doi.org/10.1007/BF02644152.
  19. J. Herb, J. Sievers, H.G. Sonnenburg, A new cladding embrittlement criterion derived from ring compression tests, Nucl. Eng. Des. 273 (2014) 615-630, https://doi.org/10.1016/j.nucengdes.2014.03.047.
  20. J.K. Holmen, B.H. Frodal, O.S. Hopperstad, T. Borvik, Strength differential effect in age hardened aluminum alloys, Int. J. Plast. 99 (2017) 144-161, https://doi.org/10.1016/j.ijplas.2017.09.004.
  21. W.A. Spitzig, O. Richmond, The effect of pressure on the flow stress of metals, Acta Metall. 32 (1984) 457-463, https://doi.org/10.1016/0001-6160(84)90119-6.
  22. W.A. Spitzig, R.J. Sober, O. Richmond, The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory, Metall. Trans. A. 7 (1976) 1703-1710, https://doi.org/10.1007/BF02817888.
  23. T. Maeda, N. Noma, T. Kuwabara, F. Barlat, Y.P. Korkolis, Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test, J. Mater. Process. Technol. 256 (2018) 247-253, https://doi.org/10.1016/j.jmatprotec.2018.02.009.
  24. GOST 25.503-97. Design Calculation and Strength Testing. Methods of Mechanical Testing of Metals. (Method of compression testing).
  25. B. Song, B. Sanborn, Relationship of Compressive Stress-Strain Response of Engineering Materials Obtained at Constant Engineering and True Strain Rates.
  26. V.I. Prokhorov, A.G. Fin'ko, R.I. Mineev, Experimental Determination of Gauge Length of Ring Samples Cut from Fuel Claddings during Cross Tension, 1977, p.23.
  27. M.I. Solonin, A.B. Alekseev, Y.I. Kazennov, V.F. Khramtsov, V.P. Kondra'ev, T.A. Krasina, V.N. Rechitsky, V.N. Stepankov, S.N. Votinov, XHM-1 alloy as a promising structural material for water-cooled fusion reactor components, J. Nucl. Mater. (1996) 233-237, https://doi.org/10.1016/S0022-3115(96)00297-8, 586-591.
  28. I. Barsoum, K.F. Al Ali, Development of a method to determine the transverse stress-strain behaviour of pipes, Procedia Eng 130 (2015) 1319-1326, https://doi.org/10.1016/j.proeng.2015.12.302.
  29. M. Bornert, F. Hild, J.-J. Orteu, S. Roux, Digital Image Correlation, in: Full-F. Meas. Identif. Solid Mech., John Wiley & Sons, Inc., Hoboken, NJ USA, 2012, pp. 157-190, https://doi.org/10.1002/9781118578469.ch6.
  30. F. Lagattu, J. Brillaud, M.-C. Lafarie-Frenot, High strain gradient measurements by using digital image correlation technique, Mater. Char. 53 (2004) 17-28, https://doi.org/10.1016/j.matchar.2004.07.009.
  31. J. Blaber, B. Adair, A. Antoniou, Ncorr : open-source 2D digital image correlation Matlab software, Exp. Mech. 55 (2015) 1105-1122, https://doi.org/10.1007/s11340-015-0009-1.
  32. S. Shrivastava, C. Ghosh, J.J. Jonas, A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments, Philos. Mag. A 92 (2012) 779-786, https://doi.org/10.1080/14786435.2011.634848.