Acknowledgement
The authors wish to thank Dr. E.A. Kuleshova for her advice and counsel. Thanks are also due to I.V. Kozlov for DIC-sample preparation.
References
- J. Desquines, D.A. Koss, A.T. Motta, B. Cazalis, M. Petit, The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA), J. Nucl. Mater. 412 (2011) 250-267, https://doi.org/10.1016/j.jnucmat.2011.03.015.
- J. Yoon, J. Kim, H. Kim, C. Won, Y. Song, S.H. Park, Calibration of hoop stress in ring tensile test with Zircaloy-4 tube, J. Mech. Sci. Technol. 31 (2017) 4183-4188, https://doi.org/10.1007/s12206-017-0815-8.
- F. Nagase, T. Sugiyama, T. Fuketa, Optimized ring tensile test method and hydrogen effect on mechanical properties of zircaloy cladding in hoop direction, J. Nucl. Sci. Technol. 46 (2009) 545-552, https://doi.org/10.1080/18811248.2007.9711560.
- M. Kiraly, D.M. Antok, L. Horvath, Z. Hozer, Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes, Nucl. Eng. Technol. 50 (2018) 425-431, https://doi.org/10.1016/j.net.2018.01.002.
- Nindiyasari F., Pierick P.T.E.R., Boomstra D., Pandit A.M., Ring tensile test of reference zircaloy cladding tube as a proof of principle for hotcell setup, TopFuel-2018 Conf (30.09.2018-04.10.2018), 211481815.
- M.A. Martin-Rengel, F.J. Gomez Sanchez, J. Ruiz-Hervias, L. Caballero, A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, J. Nucl. Mater. 429 (2012) 276-283, https://doi.org/10.1016/j.jnucmat.2012.06.003.
- L. Yegorova, Database on the Behavior of High Burnup Fuel Rods with Zr1%Nb Cladding and UO2 Fuel (VVER Type) under Reactivity Accident Conditions vol. 2, NUREG/IA-0156, July 1999.
- S. Holmstrom, M. Bruchhausen, K.-F. Nilsson, Test methodologies for determining high temperature material properties of thin walled tubes EERA JPNM Pilot project TASTE. https://doi.org/10.2760/702821, 2017.
- E. Campitelli, P. Spatig, Assessment of Mechanical Properties in Unirradiated and Irradiated Zircaloys and Steels with Non-standard Tests and Finite Element Calculations, EPFL, Lausanne, 2005, https://doi.org/10.5075/epflthesis-3304.
- J. Ik, Y. Jung, G. Kim, J. Myun, J. Dong, J. Lee, H. Jae, J. Mehrdad, S.S. Lee, H.S. Kim, Obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile testing obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile T. https://doi.org/10.3365/KJMM.2016.54.4.231, 2016.
- M. Quanjin, M.R.M. Rejab, Q. Halim, M.N.M. Merzuki, M.A.H. Darus, Experimental investigation of the tensile test using digital image correlation (DIC) method, Mater, Today Proc 27 (2020) 757-763, https://doi.org/10.1016/j.matpr.2019.12.072.
- A. Racine, M. Bornert, C. Cappelaere, D. Caldemaison, Experimental investigation of strain, damage and failure of hydrided Zircaloy-4 with various hydrides orientations, Proc. 18th Int. Conf. Struct. Mech. React. Technol. 43-12 (2005) 430.
- T.B. Massalski, Editor-in-Chief, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams-, second ed. vol. 3, ASM International, Materials Park, Ohio, USA, December 1990, p. 3589.
- Deutsche Gesellschaft fur Metallkunde, Zeitschrift Fur Metallkunde., RiedererVerlag, 1948.
- B.A. Gurovich, A.S. Frolov, I.V. Fedotov, Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500-1100)℃, Nucl. Eng. Technol. 52 (2020) 1213-1221, https://doi.org/10.1016/j.net.2019.11.019.
- Iso 6892-1. Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature.
- Y. Wang, S. Xu, S. Ren, H. Wang, An Experimental-Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking, 2016, p. 2016.
- H.J. Kleemola, M.A. Nieminen, On the strain-hardening parameters of metals, Metall. Trans. 5 (1974) 1863-1866, https://doi.org/10.1007/BF02644152.
- J. Herb, J. Sievers, H.G. Sonnenburg, A new cladding embrittlement criterion derived from ring compression tests, Nucl. Eng. Des. 273 (2014) 615-630, https://doi.org/10.1016/j.nucengdes.2014.03.047.
- J.K. Holmen, B.H. Frodal, O.S. Hopperstad, T. Borvik, Strength differential effect in age hardened aluminum alloys, Int. J. Plast. 99 (2017) 144-161, https://doi.org/10.1016/j.ijplas.2017.09.004.
- W.A. Spitzig, O. Richmond, The effect of pressure on the flow stress of metals, Acta Metall. 32 (1984) 457-463, https://doi.org/10.1016/0001-6160(84)90119-6.
- W.A. Spitzig, R.J. Sober, O. Richmond, The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory, Metall. Trans. A. 7 (1976) 1703-1710, https://doi.org/10.1007/BF02817888.
- T. Maeda, N. Noma, T. Kuwabara, F. Barlat, Y.P. Korkolis, Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test, J. Mater. Process. Technol. 256 (2018) 247-253, https://doi.org/10.1016/j.jmatprotec.2018.02.009.
- GOST 25.503-97. Design Calculation and Strength Testing. Methods of Mechanical Testing of Metals. (Method of compression testing).
- B. Song, B. Sanborn, Relationship of Compressive Stress-Strain Response of Engineering Materials Obtained at Constant Engineering and True Strain Rates.
- V.I. Prokhorov, A.G. Fin'ko, R.I. Mineev, Experimental Determination of Gauge Length of Ring Samples Cut from Fuel Claddings during Cross Tension, 1977, p.23.
- M.I. Solonin, A.B. Alekseev, Y.I. Kazennov, V.F. Khramtsov, V.P. Kondra'ev, T.A. Krasina, V.N. Rechitsky, V.N. Stepankov, S.N. Votinov, XHM-1 alloy as a promising structural material for water-cooled fusion reactor components, J. Nucl. Mater. (1996) 233-237, https://doi.org/10.1016/S0022-3115(96)00297-8, 586-591.
- I. Barsoum, K.F. Al Ali, Development of a method to determine the transverse stress-strain behaviour of pipes, Procedia Eng 130 (2015) 1319-1326, https://doi.org/10.1016/j.proeng.2015.12.302.
- M. Bornert, F. Hild, J.-J. Orteu, S. Roux, Digital Image Correlation, in: Full-F. Meas. Identif. Solid Mech., John Wiley & Sons, Inc., Hoboken, NJ USA, 2012, pp. 157-190, https://doi.org/10.1002/9781118578469.ch6.
- F. Lagattu, J. Brillaud, M.-C. Lafarie-Frenot, High strain gradient measurements by using digital image correlation technique, Mater. Char. 53 (2004) 17-28, https://doi.org/10.1016/j.matchar.2004.07.009.
- J. Blaber, B. Adair, A. Antoniou, Ncorr : open-source 2D digital image correlation Matlab software, Exp. Mech. 55 (2015) 1105-1122, https://doi.org/10.1007/s11340-015-0009-1.
- S. Shrivastava, C. Ghosh, J.J. Jonas, A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments, Philos. Mag. A 92 (2012) 779-786, https://doi.org/10.1080/14786435.2011.634848.