Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.033

Evaluation of the true-strength characteristics for isotropic materials using ring tensile test  

Frolov, A.S. (National Research Center "Kurchatov Institute")
Fedotov, I.V. (National Research Center "Kurchatov Institute")
Gurovich, B.A. (National Research Center "Kurchatov Institute")
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2323-2333 More about this Journal
Abstract
The paper proposes a technique for reconstructing the true hardening curve of isotropic materials from ring tensile tests. Neutron irradiated 42XNM alloy tensile properties were investigated. The calculation of the true hardening curve for tensile and compression tests of standard cylindrical samples was performed at the first step. After that, the FEM-model was developed and validated using the ring tension and compression tests (with the hardening curve defined in step 1). Finally, the true hardening curve was calculated by selecting the FEM-model parameters and its validation by ring sample tests in different states using an iterative method. For these samples, experimental and calculated gauge length values were obtained, and the corresponding material's constants were estimated.
Keywords
42XNM alloy; Ring tensile test; Compression test; True hardening curve; Digital image correlation; FEM; Gauge length;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nindiyasari F., Pierick P.T.E.R., Boomstra D., Pandit A.M., Ring tensile test of reference zircaloy cladding tube as a proof of principle for hotcell setup, TopFuel-2018 Conf (30.09.2018-04.10.2018), 211481815.
2 M.A. Martin-Rengel, F.J. Gomez Sanchez, J. Ruiz-Hervias, L. Caballero, A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, J. Nucl. Mater. 429 (2012) 276-283, https://doi.org/10.1016/j.jnucmat.2012.06.003.   DOI
3 L. Yegorova, Database on the Behavior of High Burnup Fuel Rods with Zr1%Nb Cladding and UO2 Fuel (VVER Type) under Reactivity Accident Conditions vol. 2, NUREG/IA-0156, July 1999.
4 S. Holmstrom, M. Bruchhausen, K.-F. Nilsson, Test methodologies for determining high temperature material properties of thin walled tubes EERA JPNM Pilot project TASTE. https://doi.org/10.2760/702821, 2017.
5 J. Ik, Y. Jung, G. Kim, J. Myun, J. Dong, J. Lee, H. Jae, J. Mehrdad, S.S. Lee, H.S. Kim, Obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile testing obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile T. https://doi.org/10.3365/KJMM.2016.54.4.231, 2016.
6 M. Quanjin, M.R.M. Rejab, Q. Halim, M.N.M. Merzuki, M.A.H. Darus, Experimental investigation of the tensile test using digital image correlation (DIC) method, Mater, Today Proc 27 (2020) 757-763, https://doi.org/10.1016/j.matpr.2019.12.072.   DOI
7 H.J. Kleemola, M.A. Nieminen, On the strain-hardening parameters of metals, Metall. Trans. 5 (1974) 1863-1866, https://doi.org/10.1007/BF02644152.   DOI
8 B.A. Gurovich, A.S. Frolov, I.V. Fedotov, Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500-1100)℃, Nucl. Eng. Technol. 52 (2020) 1213-1221, https://doi.org/10.1016/j.net.2019.11.019.   DOI
9 Iso 6892-1. Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature.
10 Y. Wang, S. Xu, S. Ren, H. Wang, An Experimental-Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking, 2016, p. 2016.
11 J. Herb, J. Sievers, H.G. Sonnenburg, A new cladding embrittlement criterion derived from ring compression tests, Nucl. Eng. Des. 273 (2014) 615-630, https://doi.org/10.1016/j.nucengdes.2014.03.047.   DOI
12 W.A. Spitzig, O. Richmond, The effect of pressure on the flow stress of metals, Acta Metall. 32 (1984) 457-463, https://doi.org/10.1016/0001-6160(84)90119-6.   DOI
13 W.A. Spitzig, R.J. Sober, O. Richmond, The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory, Metall. Trans. A. 7 (1976) 1703-1710, https://doi.org/10.1007/BF02817888.   DOI
14 T. Maeda, N. Noma, T. Kuwabara, F. Barlat, Y.P. Korkolis, Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test, J. Mater. Process. Technol. 256 (2018) 247-253, https://doi.org/10.1016/j.jmatprotec.2018.02.009.   DOI
15 GOST 25.503-97. Design Calculation and Strength Testing. Methods of Mechanical Testing of Metals. (Method of compression testing).
16 V.I. Prokhorov, A.G. Fin'ko, R.I. Mineev, Experimental Determination of Gauge Length of Ring Samples Cut from Fuel Claddings during Cross Tension, 1977, p.23.
17 F. Lagattu, J. Brillaud, M.-C. Lafarie-Frenot, High strain gradient measurements by using digital image correlation technique, Mater. Char. 53 (2004) 17-28, https://doi.org/10.1016/j.matchar.2004.07.009.   DOI
18 M.I. Solonin, A.B. Alekseev, Y.I. Kazennov, V.F. Khramtsov, V.P. Kondra'ev, T.A. Krasina, V.N. Rechitsky, V.N. Stepankov, S.N. Votinov, XHM-1 alloy as a promising structural material for water-cooled fusion reactor components, J. Nucl. Mater. (1996) 233-237, https://doi.org/10.1016/S0022-3115(96)00297-8, 586-591.   DOI
19 I. Barsoum, K.F. Al Ali, Development of a method to determine the transverse stress-strain behaviour of pipes, Procedia Eng 130 (2015) 1319-1326, https://doi.org/10.1016/j.proeng.2015.12.302.   DOI
20 M. Bornert, F. Hild, J.-J. Orteu, S. Roux, Digital Image Correlation, in: Full-F. Meas. Identif. Solid Mech., John Wiley & Sons, Inc., Hoboken, NJ USA, 2012, pp. 157-190, https://doi.org/10.1002/9781118578469.ch6.
21 S. Shrivastava, C. Ghosh, J.J. Jonas, A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments, Philos. Mag. A 92 (2012) 779-786, https://doi.org/10.1080/14786435.2011.634848.   DOI
22 M. Kiraly, D.M. Antok, L. Horvath, Z. Hozer, Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes, Nucl. Eng. Technol. 50 (2018) 425-431, https://doi.org/10.1016/j.net.2018.01.002.   DOI
23 A. Racine, M. Bornert, C. Cappelaere, D. Caldemaison, Experimental investigation of strain, damage and failure of hydrided Zircaloy-4 with various hydrides orientations, Proc. 18th Int. Conf. Struct. Mech. React. Technol. 43-12 (2005) 430.
24 T.B. Massalski, Editor-in-Chief, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams-, second ed. vol. 3, ASM International, Materials Park, Ohio, USA, December 1990, p. 3589.
25 Deutsche Gesellschaft fur Metallkunde, Zeitschrift Fur Metallkunde., RiedererVerlag, 1948.
26 J.K. Holmen, B.H. Frodal, O.S. Hopperstad, T. Borvik, Strength differential effect in age hardened aluminum alloys, Int. J. Plast. 99 (2017) 144-161, https://doi.org/10.1016/j.ijplas.2017.09.004.   DOI
27 J. Desquines, D.A. Koss, A.T. Motta, B. Cazalis, M. Petit, The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA), J. Nucl. Mater. 412 (2011) 250-267, https://doi.org/10.1016/j.jnucmat.2011.03.015.   DOI
28 J. Yoon, J. Kim, H. Kim, C. Won, Y. Song, S.H. Park, Calibration of hoop stress in ring tensile test with Zircaloy-4 tube, J. Mech. Sci. Technol. 31 (2017) 4183-4188, https://doi.org/10.1007/s12206-017-0815-8.   DOI
29 F. Nagase, T. Sugiyama, T. Fuketa, Optimized ring tensile test method and hydrogen effect on mechanical properties of zircaloy cladding in hoop direction, J. Nucl. Sci. Technol. 46 (2009) 545-552, https://doi.org/10.1080/18811248.2007.9711560.   DOI
30 J. Blaber, B. Adair, A. Antoniou, Ncorr : open-source 2D digital image correlation Matlab software, Exp. Mech. 55 (2015) 1105-1122, https://doi.org/10.1007/s11340-015-0009-1.   DOI
31 E. Campitelli, P. Spatig, Assessment of Mechanical Properties in Unirradiated and Irradiated Zircaloys and Steels with Non-standard Tests and Finite Element Calculations, EPFL, Lausanne, 2005, https://doi.org/10.5075/epflthesis-3304.
32 B. Song, B. Sanborn, Relationship of Compressive Stress-Strain Response of Engineering Materials Obtained at Constant Engineering and True Strain Rates.