• Title/Summary/Keyword: 42XNM alloy

Search Result 2, Processing Time 0.019 seconds

Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500-1100)℃

  • Gurovich, B.A.;Frolov, A.S.;Fedotov, I.V.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1213-1221
    • /
    • 2020
  • Chromium-nickel alloy 42XNM (XHM-1, Bochvalloy) is considered as a promising material for future generations of nuclear reactors, primarily as a material for the fuel elements shells in the development of accident tolerant fuel. However, as with most nickel-based alloys, 42ХNМ is characterized by a sharp decrease in plastic properties in the temperature range of (500-900)℃. This effect is enhanced by neutron irradiation. Preliminary tests of ring samples of 42XNM alloy (after irradiation as a part of the VVER-1000 control system) in the temperature range of ductility failure showed that the standard technique for processing tensile diagrams does not allow to evaluate the plastic properties correctly at low strains. Therefore, in this work, the alternative method for testing ring samples from materials with low plastic characteristics was developed. It was shown that the minimum value of the permanent strain of the irradiated 42XNM alloy in the temperature range of (500-1100)℃, determined by the alternative method, was ~1.6% at 750 ℃.

Evaluation of the true-strength characteristics for isotropic materials using ring tensile test

  • Frolov, A.S.;Fedotov, I.V.;Gurovich, B.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2323-2333
    • /
    • 2021
  • The paper proposes a technique for reconstructing the true hardening curve of isotropic materials from ring tensile tests. Neutron irradiated 42XNM alloy tensile properties were investigated. The calculation of the true hardening curve for tensile and compression tests of standard cylindrical samples was performed at the first step. After that, the FEM-model was developed and validated using the ring tension and compression tests (with the hardening curve defined in step 1). Finally, the true hardening curve was calculated by selecting the FEM-model parameters and its validation by ring sample tests in different states using an iterative method. For these samples, experimental and calculated gauge length values were obtained, and the corresponding material's constants were estimated.