DOI QR코드

DOI QR Code

정신의학에서의 약물유전학 현황

Current Pharmacogenetics in Psychiatry

  • 김일빈 (한양대학교구리병원 정신건강의학과) ;
  • 이유상 (용인정신병원 정신건강의학과)
  • Kim, Il Bin (Department of Psychiatry, Hanyang University Guri Hospital) ;
  • Lee, Yu Sang (Department of Psychiatry, Yong-In Mental Hospital)
  • 투고 : 2021.03.23
  • 심사 : 2021.04.08
  • 발행 : 2021.04.30

초록

Pharmacogenetics is opening a new era of precision medicine in psychiatry. Drug-metabolizing enzymes are characterized by genetic polymorphisms, which render a large portion of variability in individual drug metabolism. Dose adjustment based on pharmacogenetics knowledge is a first step to translate pharmacogenetics into clinical practice. However, diverse factors including cost-effectiveness should be addressed to provide clinical recommendation. To address current challenges in pharmacogenetics testing in psychiatry, this review provides an update regarding genotyping (SNP analysis, array, and next-generation sequencing), genotype-phenotype correlations, and cost-effectiveness. The current updates on pharmacogenetics in psychiatry will provide guidance for both clinician and researchers to have a consensus in harmonizing efforts to advance the pharmacogenetics field in a part of precision medicine in psychiatry.

키워드

과제정보

본 연구는 용인정신의학 연구소의 지원을 받아 수행되었음.

참고문헌

  1. Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999;20:342-349. https://doi.org/10.1016/S0165-6147(99)01363-2
  2. Gonzalez FJ, Idle JR. Pharmacogenetic phenotyping and genotyping. Clin Pharmacokinet 1994;26:59-70. https://doi.org/10.2165/00003088-199426010-00005
  3. Motulsky AG. Drug reactions, enzymes, and biochemical genetics. J Am Med Assoc 1957;165:835-837. https://doi.org/10.1001/jama.1957.72980250010016
  4. Kalow W. Contribution of hereditary factors to the response to drugs. Fed Proc 1965;24:1259-1265.
  5. Mahgoub A, Dring LG, Idle JR, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977;2:584-586.
  6. Nelson DR, Nebert DW. Cytochrome P450 (CYP) gene superfamily. eLS [serial online] 2011 Jan 17 [cited 2021 March 20]. Available from URL: https://doi.org/10.1002/9780470015902.a0005667.pub2.
  7. Mulder H, Heerdink ER, van Iersel EE, Wilmink FW, Egberts AC. Prevalence of patients using drugs metabolized by cytochrome P450 2D6 in different populations: a cross-sectional study. Ann Pharmacother 2007;41:408-413. https://doi.org/10.1345/aph.1H482
  8. Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr Top Med Chem 2004;4:1385-1398.
  9. Stingl JC, Brockmoller J, Viviani R. Genetic variability of drugmetabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013;18:273-287. https://doi.org/10.1038/mp.2012.42
  10. Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 2008;40:187-224. https://doi.org/10.1080/03602530801952864
  11. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007;116:496-526. https://doi.org/10.1016/j.pharmthera.2007.09.004
  12. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M, et al. The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004;37:243-265. https://doi.org/10.1055/s-2004-832687
  13. Hall-Flavin DK, Winner JG, Allen JD, Carhart JM, Proctor B, Snyder KA, et al. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharmacogenet Genomics 2013;23:535-548. https://doi.org/10.1097/FPC.0b013e3283649b9a
  14. Bousman CA, Arandjelovic K, Mancuso SG, Eyre HA, Dunlop BW. Pharmacogenetic tests and depressive symptom remission: a metaanalysis of randomized controlled trials. Pharmacogenomics 2019; 20:37-47. https://doi.org/10.2217/pgs-2018-0142
  15. Jukic MM, Haslemo T, Molden E, Ingelman-Sundberg M. Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. Am J Psychiatry 2018;175:463-470. https://doi.org/10.1176/appi.ajp.2017.17050550
  16. Solomon HV, Cates KW, Li KJ. Does obtaining CYP2D6 and CYP2C19 pharmacogenetic testing predict antidepressant response or adverse drug reactions? Psychiatry Res 2019;271:604-613. https://doi.org/10.1016/j.psychres.2018.12.053
  17. Jukic MM, Smith RL, Haslemo T, Molden E, Ingelman-Sundberg M. Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: a retrospective, cohort study. Lancet Psychiatry 2019;6:418-426. https://doi.org/10.1016/S2215-0366(19)30088-4
  18. Rosenblat JD, Lee Y, McIntyre RS. Does pharmacogenomic testing improve clinical outcomes for major depressive disorder? A systematic review of clinical trials and cost-effectiveness studies. J Clin Psychiatry 2017;78:720-729. https://doi.org/10.4088/JCP.15r10583
  19. Peterson K, Dieperink E, Anderson J, Boundy E, Ferguson L, Helfand M. Rapid evidence review of the comparative effectiveness, harms, and cost-effectiveness of pharmacogenomics-guided antidepressant treatment versus usual care for major depressive disorder. Psychopharmacology (Berl) 2017;234:1649-1661. https://doi.org/10.1007/s00213-017-4622-9
  20. Maciel A, Cullors A, Lukowiak AA, Garces J. Estimating cost savings of pharmacogenetic testing for depression in real-world clinical settings. Neuropsychiatr Dis Treat 2018;14:225-230. https://doi.org/10.2147/NDT.S145046
  21. Hornberger J, Li Q, Quinn B. Cost-effectiveness of combinatorial pharmacogenomic testing for treatment-resistant major depressive disorder patients. Am J Manag Care 2015;21:e357-e365.
  22. Mitropoulos K, Johnson L, Vozikis A, Patrinos GP. Relevance of pharmacogenomics for developing countries in Europe. Drug Metabol Drug Interact 2011;26:143-146.
  23. Roederer MW, Sanchez-Giron F, Kalideen K, Kudzi W, McLeod HL, Zhang W; Pharmacogenetics for Every Nation Initiative. Pharmacogenetics and rational drug use around the world. Pharmacogenomics 2011;12:897-905. https://doi.org/10.2217/pgs.11.17
  24. Mrazek DA. Psychiatric pharmacogenomic testing in clinical practice. Dialogues Clin Neurosci 2010;12:69-76. https://doi.org/10.31887/DCNS.2010.12.1/dmrazek
  25. Pratt VM, Del Tredici AL, Hachad H, Ji Y, Kalman LV, Scott SA, et al. Recommendations for clinical CYP2C19 genotyping allele selection: a report of the association for molecular pathology. J Mol Diagn 2018;20:269-276. https://doi.org/10.1016/j.jmoldx.2018.01.011
  26. Nofziger C, Turner AJ, Sangkuhl K, Whirl-Carrillo M, Agundez JAG, Black JL, et al. PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther 2020;107:154-170. https://doi.org/10.1002/cpt.1643
  27. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008;83:234-242. https://doi.org/10.1038/sj.clpt.6100406
  28. Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: from twin studies to next generation sequencing. Eur J Pharm Sci 2019;130:65-77. https://doi.org/10.1016/j.ejps.2019.01.024
  29. Fabbri C, Kasper S, Kautzky A, Zohar J, Souery D, Montgomery S, et al. A polygenic predictor of treatment-resistant depression using whole exome sequencing and genome-wide genotyping. Transl Psychiatry 2020;10:50. https://doi.org/10.1038/s41398-020-0738-5
  30. McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 2012;8:371-382. https://doi.org/10.1517/17425255.2012.657626
  31. Lee SY, Sohn KM, Ryu JY, Yoon YR, Shin JG, Kim JW. Sequencebased CYP2D6 genotyping in the Korean population. Ther Drug Monit 2006;28:382-387. https://doi.org/10.1097/01.ftd.0000211823.80854.db
  32. Lee SJ, Lee SS, Jung HJ, Kim HS, Park SJ, Yeo CW, et al. Discovery of novel functional variants and extensive evaluation of CYP2D6 genetic polymorphisms in Koreans. Drug Metab Dispos 2009;37: 1464-1470. https://doi.org/10.1124/dmd.108.022368
  33. Park IH, Ro J, Park S, Lim HS, Lee KS, Kang HS, et al. Lack of any association between functionally significant CYP2D6 polymorphisms and clinical outcomes in early breast cancer patients receiving adjuvant tamoxifen treatment. Breast Cancer Res Treat 2012; 131:455-461. https://doi.org/10.1007/s10549-011-1425-2
  34. Byeon JY, Kim YH, Lee CM, Kim SH, Chae WK, Jung EH, et al. CYP2D6 allele frequencies in Korean population, comparison with East Asian, Caucasian and African populations, and the comparison of metabolic activity of CYP2D6 genotypes. Arch Pharm Res 2018;41:921-930. https://doi.org/10.1007/s12272-018-1075-6
  35. Kirchheiner J, Fuhr U, Brockmoller J. Pharmacogenetics-based therapeutic recommendations--ready for clinical practice? Nat Rev Drug Discov 2005;4:639-647. https://doi.org/10.1038/nrd1801
  36. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte--an update of guidelines. Clin Pharmacol Ther 2011;89:662-673. https://doi.org/10.1038/clpt.2011.34