DOI QR코드

DOI QR Code

Performance analysis and experiment results of multiband FSK signal based on direct sequence spread spectrum method

직접 수열 확산 방식 기반 다중 밴드 FSK 신호의 성능 분석 및 실험 결과

  • Received : 2021.05.11
  • Accepted : 2021.05.31
  • Published : 2021.07.31

Abstract

This paper presented an efficient transceiver structure of multiband Frequency Shift Keying (FSK) signals with direct sequence spread spectrum for maintaining covertness and performance. In aspect to covertness, direct sequence spread spectrum method, which multiplying by Pseudo Noise (PN) codes whose rate is much higher than that of data sequence, is employed. In aspect to performance, in order to overcome performance degradation caused by multipath and Doppler spreading, we applied multiband, turbo equalization, and weighting algorithm are applied. Based on the simulation results, by applying 4 number of multiband and number of chips are 8 and 32, experiments were conducted in a lake with a distance of moving from 300 m to 500 m between the transceivers. we confirmed that the performance was improved as the number of bands and chips are increased. Furthermore, the performance of multiband was improved when the proposed weighting algorithm was applied.

본 논문에서는 수중 통신에서 은밀성과 성능 향상을 위해 직접 수열 확산 방식 기반 다중 밴드 기법을 사용한 부 대역 Frequency Shift Keying(FSK) 신호의 효율적인 송수신 구조를 제시하였다. 은밀성적인 측면에서는 Pseudo Noise(PN) 부호의 chip을 직접 곱하는 직접 수열 대역 확산 방식을 적용하였으며, 성능적인 측면에서는 다중 경로 특성, 도플러 확산 등으로 인한 성능 감쇠를 극복하기 위해 다중 밴드, 터보 등화, 각 밴드별 가중치 알고리즘을 적용하였다. 시뮬레이션 결과를 바탕으로, 송수신기 사이의 거리가 약 300 m ~ 500 m인 호수에서 기동 실험을 하여 대역확산 신호의 chip 수를 8개, 32개로, 다중 밴드 수는 4개 일 때의 성능을 분석하였으며, chip 수가 증가할수록, 터보 등화 기법 적용 시 반복횟수가 증가할수록 성능이 향상되었고, 다중 밴드에서 프리엠블 오류율을 분석하여 밴드 별 가중치를 적용 시 더 많은 패킷 전송 성공률을 나타냈다.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 연구비 지원(과제번호: UD200010DD)으로 수행되었습니다.

References

  1. J. H. Park, "LPI techniques in the underwater acoustic channel," Proc. IEEE MILCOM. 10.5.1-10.5.5 (1986).
  2. E. M. Sozer, J. G. Proakis, M. Stojanovic, J. A. Rice, A. Benson, and M. Hatch, "Direct sequence spread spectrum based modem for under water acoustic communication and channel measurements," Proc. IEEE Oceans'99 MTS. 228-233 (1999).
  3. G. D. Weeks, J. K. Townsend, and J. A. Freebersyser, "A method and metric for quantitatively defining low probability of detection," Proc. of IEEE MILCOM. 812-826 (1998).
  4. T. C. Yang and W. B. Yang, "Low signal-to-noise-ratio underwater acoustic communication using direct-sequence spread spectrum signals," Proc. IEEE OCEANS 821-826 (2007).
  5. M. Stojanovic, J. G. Proakis, J. A. Rice, and M. D. Green, "Spread spectrum underwater acoustic telemetry," Proc. IEEE OCEANS 650-654 (1988).
  6. T. C. Yang and W. B. Yang, "Low probability of detection underwater acoustic communication using direct-sequence spread spectrum," J. Acoust. Soc. Am. 124, 3632-3647 (2008). https://doi.org/10.1121/1.2996329
  7. H.-S. Lee, C.-U. Baek, D.-W. Do, and J.-W, Jung, "Performance analysis of multiband transmission technique in underwater acoustic communication" (in Korean), JKIIECT. 11, 253-258 (2018).
  8. R. Koetter, A. C. Singer, and M. Tuchler, "Turbo equalization," IEEE Signal Processing Magazine, 21, 67-80 (2004). https://doi.org/10.1109/MSP.2004.1267050
  9. J. W. Jung, "Performance analysis of turbo equalizer in the multipath channel" (in Kore an), JKIIECT. 5, 169-173 (2012).
  10. J. Salz, "Opimum mean-square decision feedback eqaulization," Bell System Tech. J. 52, 1341-1373 (1973). https://doi.org/10.1002/j.1538-7305.1973.tb02023.x
  11. J.-W. Jung and I.-S. Kim, "A study on threshold detection algorithm for adaptive transmission in underwater acoustic communication" (in Korean), J. Acoust. Soc. Kr. 39, 585-591 (2020).