DOI QR코드

DOI QR Code

동해 천해환경에서 측정된 중주파수 전달손실 측정: Rayleigh 및 HFBL 모델과의 비교

Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model

  • 이대혁 (한양대학교 해양융합과학과) ;
  • 오래근 (한양대학교 해양융합과학과) ;
  • 최지웅 (한양대학교 해양융합공학과) ;
  • 김성일 (국방과학연구소) ;
  • 권혁종 (한국해양과학기술원)
  • 투고 : 2021.05.23
  • 심사 : 2021.06.10
  • 발행 : 2021.07.31

초록

천해 환경에서 음파가 장거리 전파되는 경우, 해저면의 비균질성으로 인해 일반적으로 사용하는 Rayleigh reflection 모델을 적용한 음파전달 모의 결과보다 더 큰 전달손실을 보이는 것으로 알려지고 있다. 이에 따라 미 해군은 경험식 기반의 해저면 반사손실(High-Frequency Bottom Loss, HFBL) 모델을 적용하여 음파 전달을 예측하고 있다. 본 연구에서는 여름철 동해 천해환경에서 중주파수(2.3 kHz, 3 kHz)를 이용한 해상실험 전달손실 측정 및 분석이 수행되었다. BELLHOP 모델을 통해 고유음선을 추적한 결과, 임계각보다 낮은 수평입사각에 대해서만 음파가 수 km 이상 장거리 전파되었으며, Rayleigh reflection 모델 기반의 전달손실 예측값과 실측 전달 손실 값과의 차이는 전달거리가 증가함에 따라 점차 증가하는 경향을 보였다. 큰 수평입사각 영역에서 Rayleigh reflection 모델과 HFBL 모델을 비교하여 HFBL의 입력값인 해저면 province 값을 추정한 후, 이를 적용한 전달 손실을 모의하여 실측 전달 손실 값과 비교하였다. 그 결과 BELLHOP 모델의 반사 손실 모델로 경험식 기반의 HFBL을 적용하여 전달 손실을 모의했을 때, 실측 전달 손실과 일치하는 것을 확인할 수 있었다.

When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.

키워드

과제정보

본 연구는 국방과학연구소의 지원에 의해 수행되었습니다.

참고문헌

  1. R. J. Urick, Principles of Underwater Sound 3rd ed (McGrawHill, New York, 1983), pp. 172-182.
  2. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer Science & Business Media, New York, 2012), pp. 1-16.
  3. A. D. Waite, Sonar For Practising Engineers 3rd ed (Spon Press, New York, 2003), pp. 43-49.
  4. D. Tang, F. S. Henyey, Z. Wang, K. L. Williams, D. Rouseff, P. H. Dahl, J. Quijano, and J. W. Choi, "Midfrequency acoustic propagation in shallow water on the New Jersey shelf: Mean intensity," J. Acoust. Soc. Am. 124, EL85 (2008). https://doi.org/10.1121/1.2963043
  5. H. Kwon, J. W. Choi, and B. Kim, "Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15" (in Korean), J. Acoust. Soc. Kr. 37, 1-11 (2018).
  6. J. W. Choi and P. H. Dahl, "First-order and zerothorder head waves, their sequences, and implications for geoacoustic inversion," J. Acoust. Soc. Am. 119, 3660-3668 (2006). https://doi.org/10.1121/1.2195110
  7. H. Kwon, J. W. Choi, W -H. Ryang, S.-U. Son, and S.-K. Jung, "Measurements of mid-frequency bottominteracting signals and geoacoustic inversion in Jinhae Bay, Southeast Korea," J. Acoust. Soc. Am. 145, 1205 (2019). https://doi.org/10.1121/1.5092609
  8. J. W. Choi and P. H. Dahl, "Mid-to-high-frequency bottom loss in the East China Sea," IEEE J. Ocean Eng. 29, 262-397 (2004).
  9. H. La and J. W. Choi, "8-kHz bottom backscattering measurements at low grazing angles in shallow water," J. Acoust. Soc. Am. 127, 160-165 (2010). https://doi.org/10.1121/1.3338987
  10. Y. G. Yoon, C. Lee, J. W. Choi, S. Chom, S. Oh, and S. K. Jung, "Measurements of mid-frequency bottom loss in shallow water of the yellow sea" (in Korean), J. Acoust. Soc. Kr. 34, 423-431 (2015). https://doi.org/10.7776/ASK.2015.34.6.423
  11. F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational Ocean Acoustics 2nd ed (American Institute of Physics, New York, 1993), pp. 14-15, 40-46.
  12. Richard P. Hodges, Underwate Acoustics: Analysis, Design and Performance of Sonar (A John Wiley and Sons, Ltd, Publication, Chichester, 2011), pp. 114-116.
  13. M. B. Porter, "The BELLHOP Manual and User's Guide:PRELIMINARY DRAFT," Heat, Light, and Sound Research, Inc., 2011.
  14. H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography 1st ed (Academic press, San Diego, 1998), pp. 17-27.
  15. C. L. Pekeris, GSA Memoirs, Propagation of Sound in the Ocean,https://pubs.geoscienceworld.org/books/book/33/chapter/3786458/, (Last viewed May 21, 2021).
  16. G. V. Frisk and J. F. Lynch, "Shallow water waveguide characterization using the Hankel transform," J. Acoust. Soc. Am. 76, 205-216 (1984). https://doi.org/10.1121/1.391098
  17. D. R. Del Balzo, C. Feuillade, and M. M. Rowe, "Effects of water-depth mismatch on marched-field localization in shallow water," J. Acoust. Soc. Am. 83, 2180-2185 (1988). https://doi.org/10.1121/1.396346
  18. M. J. Buckingham and E. M. Giddens, "On the acoustic field in a pekeris waveguide with attenuation in the bottom half-space," J. Acoust. Soc. Am. 119, 123-142 (2006). https://doi.org/10.1121/1.2141212